J. Mater. Sci. Technol. ›› 2022, Vol. 130: 249-255.DOI: 10.1016/j.jmst.2022.04.050
• Research Article • Previous Articles Next Articles
Yupeng Shia,b, Dan Lia,b, Haoxu Sib, Zhiyang Jianga,b, Mengyuan Lia,b, Chunhong Gonga,b,*()
Received:
2022-04-08
Revised:
2022-04-28
Accepted:
2022-04-29
Published:
2022-12-10
Online:
2022-12-07
Contact:
Chunhong Gong
About author:
∗ E-mail address: gong@henu.edu.cn (C. Gong)Yupeng Shi, Dan Li, Haoxu Si, Zhiyang Jiang, Mengyuan Li, Chunhong Gong. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum[J]. J. Mater. Sci. Technol., 2022, 130: 249-255.
Fig. 1. (a) Schematic of the synthesis of TiN and TiN/BN composites. (b) SEM images of TiN (c) and TiN/BN. (d, e) SEM image and elemental mappings of TiN/BN composites. (f) X-ray diffraction patterns and (g) Fourier transforms infrared spectra of TiN and TiN/BN. (h) Optical photograph of TiN/BN/SiO2 composites.
Fig. 2. Microwave absorption performance (RL) of (a) T-10, (b) T-20, (c) T-30, (d) B-10, (e) B-20, and (f) B-30. (g, h) Histogram of maximum EAB and RLmin for TiN/BN/SiO2 composites at different temperatures (293 K and 873 K) compared to that of TiN/SiO2 composites. (i) Optical photograph of waveguide samples with high-temperature resistance and thermal insulation.
Fig. 3. Average complex permittivity value at different temperatures of TiN/SiO2 and TiN/BN/SiO2 composites with different filler contents: (a) T-10 and B-10, (b) T-20 and B-20, (c) T-30 and B-30. (d, e) Change rates of the complex permittivity for TiN/BN/SiO2 composites at different temperatures compared with TiN/SiO2 composites. (f) Room temperature conductivity of TiN/SiO2 and TiN/BN/SiO2 composites with different filler contents. (g, h) Dielectric loss tangent of T-10 and B-20 at different temperatures. (i) Plots of εr′ vs B0 (B0=εr″/f) of T-10 and B-20.
Fig. 4. Cyclic stability of electromagnetic properties and microwave absorption properties. (a, b) Complex dielectric constants of B-20 and T-10 before and after high-temperature testing (293 K). (c, d) Change rate of εr′ and εr″ of T-10 and B-20 after high-temperature testing processes (293 K). (e) XRD of B-30 and T-30 after the high-temperature testing processes (293 K). (f, g) RL of T-10 and B-20 before and after high-temperature testing processes (293 K). (h) Radar chart for comparison of thickness, RLmin, EAB, temperature, and temperature stability between B-20 and reported representative high-temperature microwave absorption materials (CF/SiO2, MWCNTs/polyimide, Graphene/silica, Fe3O4?MWCNTs/SiO2, and ZnO-MWCNT/SiO2).
[1] |
Y.L. Zhang, K.P. Ruan, J.W. Gu, Small 17 (2021) 2101951.
DOI URL |
[2] |
G.H. Dai, R.X. Deng, X. You, T. Zhang, Y. Yu, L.X. Song, J. Mater. Sci. Technol. 116 (2022) 11-21.
DOI URL |
[3] |
Y. Zhang, T. Pan, Z.J. Yang, Chem. Eng. J. 389 (2020) 124433.
DOI URL |
[4] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[5] | P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, Nano-Micro Lett. 14 (2022) 51. |
[6] |
X. Yang, Y.P. Duan, S.Q. Li, L.X. Huang, H.F. Pang, B. Ma, T.M. Wang, Carbon 188 (2022) 376-384.
DOI URL |
[7] |
Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27 (2015) 2049-2053.
DOI URL |
[8] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[9] |
Y. Wang, X.C. Di, J. Chen, L.N. She, H.G. Pan, B. Zhao, R.C. Che, Carbon 191 (2022) 625-635.
DOI URL |
[10] |
X.T. Shi, R.H. Zhang, K.P. Ruan, T.B. Ma, Y.Q. Guo, J.W. Gu, J. Mater. Sci. Technol. 82 (2021) 239-249.
DOI URL |
[11] | X. Yang, Y.P. Duan, S.Q. Li, H.F. Pang, L.X. Huang, Y.Y. Fu, T.M. Wang, Nano-Micro Lett. 14 (2022) 28. |
[12] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem. Int. Ed. 61 (2022) e202200705. |
[13] |
Y.K. Li, W. Li, Y. Wang, J. Cao, J.G. Guan, Adv. Opt. Mater. 6 (2018) 1800691.
DOI URL |
[14] |
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C.M. Koo, G. Friedman, Y. Gogotsi, ACS Nano 14 (2020) 5008-5016.
DOI URL |
[15] | Z.R. Jia, K.J. Lin, G.L. Wu, H. Xing, H.J. Wu, Nano 13 (2018) 18300050. |
[16] |
X. Yang, Y.P. Duan, Y.S. Zeng, H.F. Pan, G.J. Ma, X.H. Dai, J. Mater. Chem. C 8 (2020) 1583-1590.
DOI URL |
[17] |
J. Liu, M.S. Cao, Q. Luo, H.L. Shi, W.Z. Wang, J. Yuan, ACS Appl. Mater. Interfaces 8 (2016) 22615-22622.
DOI URL |
[18] |
Y. Wei, Y.P. Shi, Z.Y. Jiang, X.F. Zhang, H.H. Chen, Y.H. Zhang, J.W. Zhang, C.H. Gong, J. Alloy. Compd. 810 (2019) 151950.
DOI URL |
[19] |
Y. Wei, L. Zhang, C.H. Gong, S.C. Liu, M.M. Zhang, Y.P. Shi, J.W. Zhang, J. Alloy. Compd. 735 (2018) 1488-1493.
DOI URL |
[20] |
Y. Wei, Y.P. Shi, X.F. Zhang, D. Li, L. Zhang, C.H. Gong, J.W. Zhang, Adv. Powder Technol. 31 (2020) 3458-3464.
DOI URL |
[21] |
X.Y. Hong, Q. Wang, Z.H. Tang, W. Khan, D.W. Zhou, T.F. Feng, J. Phys. Chem. C 120 (2016) 148-156.
DOI URL |
[22] |
Y. Wei, Y.P. Shi, X.F. Zhang, Z.F. Jiang, Y.H. Zhang, L. Zhang, J.W. Zhang, C.H. Gong, J. Mater. Sci. Mater. Electron. 30 (2019) 14519-14527.
DOI URL |
[23] |
B. Zhu, Y. Cui, D.F. Lv, K.Z. Xu, Y.J. Chen, Y.N. Wei, H.Y. Wei, J.L. Bu, Appl. Surf. Sci. 533 (2020) 147439.
DOI URL |
[24] |
Y.H. Zhang, H.J. Meng, Y.P. Shi, X.F. Zhang, C.X. Liu, Y. Wang, C.H. Gong, J.W. Zhang, Compos. Pt. B-Eng. 193 (2020) 108028.
DOI URL |
[25] | X.B. Shang, D. Zhai, M.H. Liu, J.R. Chen, Zhang F.C, C. Wei, Y.Z. Bai, G.C. Li, Ce-ram. Int. 47 (2021) 7539-7757. |
[26] |
C.R. Zou, B. Li, X.J. Meng, K. Liu, X.J. Yang, D. Li, S.Q. Wang, Corros. Sci. 139 (2018) 243-254.
DOI URL |
[27] |
Z. Zhao, G.X. Zhou, Z.H. Yang, X.Q. Cao, D.C. Jia, Y. Zhou, J. Adv. Ceram. 9 (2020) 403-412.
DOI URL |
[28] |
B. Zhong, Y.J. Cheng, M. Wang, Y.Q. Bai, X.X. Huang, Y.L. Yu, H.T. Wang, G.W. Wen, Compos. Pt. A-Appl. Sci. Manuf. 112 (2018) 515-524.
DOI URL |
[29] |
Y.Q. Bai, B. Zhong, Y.L. Yu, M. Wang, J. Zhang, B. Zhang, K.X. Gao, A.M. Liang, C.Y. Wang, J.Y. Zhang, npj 2D Mater. Appl. 3 (2019) 32.
DOI URL |
[30] |
W. Zhou, L. Long, P. Xiao, C.K. Jia, Y. Li, Surf. Coating. Technol. 359 (2019) 272-277.
DOI URL |
[31] |
Y.H. Zhang, H.S. Si, S.C. Liu, Z.Y. Jiang, J.W. Zhang, C.H. Gong, J. Alloy. Compd. 850 (2021) 156680.
DOI URL |
[32] |
X.H. Li, Z. Cao, F. Liu, Z.J. Zhang, H.x. Dang, Chem. Lett. 35 (2006) 94-95.
DOI URL |
[33] | J.Y. Yang, Z.S. Jin, X.D. Wang, W. Li, J.W. Zhang, S.L. Zhang, X.Y. Guo, Z.J. Zhang, Dalton Trans. 20 (2003) 3898-3901. |
[34] |
J.H. Luo, K. Zhang, M.L. Cheng, M.M. Gu, X.K. Sun, Chem. Eng. J. 380 (2020) 122625.
DOI URL |
[35] |
Y.P. Shi, D. Li, Y. Wei, C.H. Gong, J.W. Zhang, Compos. Commun. 28 (2021) 100919.
DOI URL |
[36] |
C. Li, Z.H. Li, X.S. Qi, X. Gong, Y.L. Chen, Q. Peng, C.Y. Deng, T. Jing, W. Zhong, J. Colloid Interface Sci. 605 (2022) 13-22.
DOI URL |
[37] | J.J. Zhang, Z.H. Li, X.S. Qi, X. Gong, R. Xie, C.Y. Deng, W. Zhong, Y.W. Du, Com-pos. Pt. B-Eng. 222 (2021) 109067. |
[38] |
Z.H. Sun, Z.Q. Yan, K.C. Yue, A.R. Li, L. Qian, Appl. Surf. Sci. 538 (2021) 147943.
DOI URL |
[39] |
X.J. Zhou, J.W. Wen, Z.N. Wang, X.H. Ma, H.J. Wu, J. Colloid Interface Sci. 602 (2021) 834-845.
DOI URL |
[40] |
M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Adv. Funct. Mater. 31 (2021) 2103436.
DOI URL |
[41] |
B. Quan, X.H. Liang, G.B. Ji, J.N. Ma, P.Y. Ouyang, H. Gong, G.Y. Xu, Y.W. Du, ACS Appl. Mater. Interfaces 9 (2017) 9964-9974.
DOI URL |
[42] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, P.B. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[43] |
S. Kang, S.Y. Qiao, Y.T. Cao, Z.M. Hu, J.R. Yu, Y. Wang, J. Zhu, ACS Appl. Mater. Interfaces 12 (2020) 46455-46465.
DOI URL |
[44] |
J.Q. Tao, J.T. Zhou, Z.J. Yao, Z.B. Jiao, B. Wei, R.Y. Tan, Z. Li, Carbon 172 (2021) 542-555.
DOI URL |
[45] |
J.H. Luo, M.N. Feng, Z.Y. Dai, C.Y. Jiang, W. Yao, N.X. Zhai, Nano Res. (2022), doi: 10.1007/s12274-022-4411-6
DOI |
[46] |
H.C. Wang, H.T. Wu, H.F. Pang, Y.H. Xiong, S.W. Ma, Y.P. Duan, Y.L. Hou, C.H. Mao, J. Mater. Sci. Technol. 97 (2022) 213-222.
DOI URL |
[47] |
B. Zhao, Y. Lie, Q.W. Zeng, B.B. Fan, L. Wang, R. Zhang, R.C. Che, J. Mater. Sci. Technol. 107 (2022) 100-110.
DOI URL |
[48] |
M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48 (2010) 788-796.
DOI URL |
[49] |
H.Y. Wang, D.M. Zhu, W.C. Zhou, F. Luo, Chem. Phys. Lett. 633 (2015) 223-228.
DOI URL |
[50] |
W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, J. Mater. Chem. C 3 (2015) 10017-10022.
DOI URL |
[51] |
M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, ACS Appl. Mater. Interfaces 7 (2015) 19408-19415.
DOI URL |
[52] |
M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, J. Mater. Chem. A 2 (2014) 10540-10547.
DOI URL |
[1] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[2] | Huaxin Hu, Xuemei Liu, Jinghong Chen, Hao Lu, Chao Liu, Haibin Wang, Junhua Luan, Zengbao Jiao, Yong Liu, Xiaoyan Song. High-temperature mechanical behavior of ultra-coarse cemented carbide with grain strengthening [J]. J. Mater. Sci. Technol., 2022, 104(0): 8-18. |
[3] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[4] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[5] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[6] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[7] | Xinyuan Lv, Fang Ye, Laifei Cheng, Litong Zhang. 3D printing “wire-on-sphere” hierarchical SiC nanowires / SiC whiskers foam for efficient high-temperature electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 109(0): 94-104. |
[8] | Min Feng, Chengyang Jiang, Minghui Chen, Shenglong Zhu, Fuhui Wang. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation [J]. J. Mater. Sci. Technol., 2022, 120(0): 139-149. |
[9] | Rui Liu, Xiang He, Miao Miao, Shaomei Cao, Xin Feng. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility [J]. J. Mater. Sci. Technol., 2022, 112(0): 202-211. |
[10] | Jia Zhao, Ying Wei, Yi Zhang, Qingguo Zhang. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 126(0): 141-151. |
[11] | Jin-Bo Cheng, Hai-Bo Zhao, Ai-Ning Zhang, Yan-Qin Wang, Yu-Zhong Wang. Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 126(0): 266-274. |
[12] | Zirui Jia, Mingyue Kong, Bowen Yu, Yingzhuo Ma, Jiaying Pan, Guanglei Wu. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 127(0): 153-163. |
[13] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[14] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[15] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||