J. Mater. Sci. Technol. ›› 2022, Vol. 128: 148-159.DOI: 10.1016/j.jmst.2022.04.026
• Research Article • Previous Articles Next Articles
Zhang Yunfeia,b, Li Yulonga, Wei Mengmenga, Yang Dengtaoa,*(), Zhang Qiuyua,b, Zhang Baolianga,c,*(
)
Received:
2022-03-19
Revised:
2022-04-15
Accepted:
2022-04-15
Published:
2022-11-20
Online:
2022-11-22
Contact:
Yang Dengtao,Zhang Baoliang
About author:
blzhang@nwpu.edu.cn (B. Zhang).Zhang Yunfei, Li Yulong, Wei Mengmeng, Yang Dengtao, Zhang Qiuyu, Zhang Baoliang. Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties[J]. J. Mater. Sci. Technol., 2022, 128: 148-159.
Fig. 3. SEM images of Co@NC (a), Co@NC@MoS2-1 (b), Co@NC@MoS2-2 (c), TEM images of Co@NC (d), Co@NC@MoS2-1 (e), HRTEM images of Co@NC@MoS2 (f), HAADF image (g) and corresponding element mappings (h-l) of Co@NC@MoS2.
Fig. 4. XRD patterns (a), Raman spectrum (b), TGA (c), curves (d), N2 adsorption-desorption isotherms (e) and pore size distribution curve (f) of Co@NC, Co@NC@MoS2-1 and NC@MoS2-2.
Samples | BET (m2/g) | Average pore size (nm) | Pore volume (cm3/g) |
---|---|---|---|
Co@NC | 91.68 | 7.26 | 0.17 |
Co@NC@MoS2-1 | 21.56 | 8.51 | 0.05 |
Co@NC@MoS2-2 | 52.19 | 11.35 | 0.15 |
Table 1. Pore performance data of the obtained products.
Samples | BET (m2/g) | Average pore size (nm) | Pore volume (cm3/g) |
---|---|---|---|
Co@NC | 91.68 | 7.26 | 0.17 |
Co@NC@MoS2-1 | 21.56 | 8.51 | 0.05 |
Co@NC@MoS2-2 | 52.19 | 11.35 | 0.15 |
Fig. 5. Survey spectra of Co@NC, Co@NC@MoS2-1 and Co@NC@MoS2-2 (a). High-resolution XPS spectra of Co@NC@MoS2: C 1 s (b), S 2p (c), Mo 3d (d) and N 1 s (e). High-resolution XPS spectra of Co 2p of Co@NC (f).
Fig. 6. 3D plots of Co@NC (a), Co@NC@MoS2-1 (b) and Co@NC@MoS2-2 (c). Comparison of the optimized RL (d), the RL curves for the thickness of 1.9 mm (e). Effective absorption band at different thickness of Co@NC@MoS2-1 (f).
Fig. 7. Electromagnetic parameters of all samples with a filler loading of 15% in the frequency range of 2-18 GHz: ε′ (a), ε′′ (b), tanδε (c), μ′ (d), μ′′ (e) and tanδμ (f). Cole-Cole semicircles of Co@NC (g), Co@NC@MoS2-1 (h), and Co@NC@MoS2-2 (i).
Fig. 8. Dependence of the matching thickness (tm) on frequency (fm) under λ/4 and normalized input impedance of Co@NC@MoS2-1 (a) and Co@NC@MoS2-2 (b).
Fig. 9. The 3D RL patterns of Co@NC@MoS2-1 with a different loading, 10 w% (a), 15 w% (b), 20 w% (c). The RLmin and EAB of Co@NC@MoS2-1 with a different loading (d) and their electromagnetic parameters: ε′, ε′′ (e), μ′, μ′′ (f).
[1] | H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng, G. Zheng, D. Zhang, R. Che, M. Cao, Adv. Funct. Mater. (2021) 2108194. |
[2] | Y. Zhang, K. Ruan J. Gu, Small 17 (2021) 2101951. |
[3] |
Z. Lou, Q. Wang, X. Zhou, U. Kara, R. Mamtani, H. Lv, M. Zhang, Z. Yang, Y. Li, C. Wang, S. Adera, X. Wang, J. Mater. Sci. Technol. 113 (2022) 33-39.
DOI URL |
[4] | F. Wu, Z. Liu, T. Xiu, B. Zhu, B. Zhang, Compos. Part B 215 (2021) 108814. |
[5] |
S. Gao, G. Zhang, Y. Wang, X. Han, P. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[6] | Z. Lou, Q. Wang, U. Kara, R. Mamtani, X. Zhou, H. Bian, Z. Yang, Y. Li, H. Lv, S. Adera, X. Wang, Nano-Micro Lett. 14 (2022) 11. |
[7] | P. Song, Z. Ma, H. Qiu, Y. Ru J. Gu, Nano-Micro Lett. 14 (2022) 51. |
[8] |
H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, Adv. Funct. Mater. 30 (2020) 1907251.
DOI URL |
[9] |
K. Yang, Y. Cui, Z. Liu, P. Liu, B. Zhang, Chem. Eng. J. 426 (2021) 131308.
DOI URL |
[10] |
T. Ma, H. Ma, K. Ruan, X. Shi, H. Qiu, S. Gao J. Gu, Chin. J. Polym. Sci. 40 (2022) 248-255.
DOI URL |
[11] |
H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou, B. Fei, R. Wu, Nat. Commun. 12 (2021) 834.
DOI URL |
[12] | L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat 1 (2021) 413-431. |
[13] |
Y. Cui, Z. Liu, Y. Zhang, P. Liu, B. Zhang, Chem. Eng. J. 422 (2021) 130591.
DOI URL |
[15] | X. Li, W. You, C. Xu, L. Wang, L. Yang, Y. Li, R. Che, Nano-Micro Lett. 13 (2021) 157. |
[16] |
P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia, Z. Guang, Chem. Eng. J. 368 (2019) 285-298.
DOI URL |
[17] |
X. Li, X. Yin, C. Song, M. Han, H. Xu, W. Duan, L. Cheng, L. Zhang, Adv. Funct. Mater. 28 (2018) 1803938.
DOI URL |
[18] |
T. Zhu, W. Shen, X. Wang, Y. Song, W. Wang, Chem. Eng. J. 378 (2019) 122159.
DOI URL |
[19] | Z. Yang, Y.Cui K.Yang, T. Shah, M. Ahmad, Q. Zhang, B. Zhang, J. Mater. Sci. Technol. 74 (2021) 203-215. |
[20] | J. Wang, Y. Cui, F. Wu, T. Shah, M. Ahmad, A. Zhang, Q. Zhang, B. Zhang, Carbon N Y 165 (2020) 275-285. |
[21] | M. Zhang, C. Han, W. Cao, M. Cao, J. Yuan, Nano-Micro Lett. 13 (2021) 27. |
[22] |
F. Nanni, P. Travaglia, M. Valentini, Compos. Sci. Technol. 69 (2009) 485-490.
DOI URL |
[23] | Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem. Int. Ed. 61 (2022) e202200705. |
[24] | D. Jang, H. Song, Y. Lee, K. Lee, K. Kim, S. Oh, S. Lee, Y. Choa, J. Nanosci. Nan- otechnol. 11 (2011) 763. |
[25] |
Y. Cheng, Y. Zhao, H. Zhao, H. Lv, X. Qi, J. Cao, G. Ji, Y. Du, Chem. Eng. J. 372 (2019) 390-398.
DOI |
[26] | Y. Wang, S. Yang, H. Wang, G. Wang, P. Yin, Carbon N Y 167 (2020) 4 85-4 94. |
[27] |
N. Sun, W. Li, S. Wei, H. Gao, W. Wang, S. Chen, J. Mater. Sci. Technol. 117 (2022) 36-48.
DOI URL |
[28] |
H. Zhang, Z. Jia, B. Wang, X. Wu, G. Wu, Chem. Eng. J. 421 (2021) 129960.
DOI URL |
[29] | N. Wu, L. Chang, D. Xu, J. Liu, L. Wei, L. Hu, J. Zhang, X. Wei, Z. Guo, J. Mater. Chem. C 7 (2019) 1659. |
[30] |
P. Liu, S. Gao, Y. Wang, Y. Huang, J. Luo, ACS Appl. Mater. Interfaces 11 (2019) 25624-25635.
DOI URL |
[31] |
L. Yang, T. Deng, Z. Jia, X. Zhou, H. Lv, Y. Zhu, J. Liu, Z. Yang, J. Mater. Sci. Technol. 83 (2021) 239-247.
DOI URL |
[32] | Y.Huang J.Yan, X. Zhang, X. Gong, C. Chen, G. Nie, X. Liu, P. Liu, Nano-Micro Lett. 13 (2021) 1-15. |
[33] |
J. Luo, K. Zhang, M. Cheng, M. Gu, X. Sun, Chem. Eng. J. 380 (2019) 122625.
DOI URL |
[34] | S. Zhang, B. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano 9 (2015) 12464-12472. |
[35] |
S. Chen, Y. Zheng, B. Zhang, Y. Feng, J. Zhu, J. Xu, C. Zhang, W. Feng, T. Liu, ACS Appl. Mater. Interfaces 11 (2019) 1384-1393.
DOI URL |
[36] | J. Tao, J. Zhou, Z. Yao, Z. Jiao, Z. Li, Carbon N Y 172 (2021) 542-555. |
[37] | B. Wei, C. Zhou, Z. Yao, P. Chen, M. Wang, Z. Li, J. Zhou, J. Hou, W. Li, Carbon N Y 184 (2021) 232-244. |
[38] | Y. Liu, Q. Deng, Y. Li, Y. Li, K. Huang, ACS Nano 15 (2021) 1121-1132. |
[39] |
Q. Qu, F. Qian, S. Yang, T. Gao, W. Liu, ACS Appl. Mater. Interfaces 8 (2016) 1398-1405.
DOI URL |
[40] |
T. Hou, Z. Jia, B. Wang, H. Li, X. Liu, Q. Chi, G. Wu, Chem. Eng. J. 422 (2021) 130079.
DOI URL |
[41] |
T. Hou, Z. Jia, B. Wang, H. Li, X. Liu, L. Bi, G. Wu, Chem. Eng. J. 414 (2021) 128875.
DOI URL |
[42] | X. Zeng, X. Cheng, R. Yu, G. Stucky, Carbon N Y 168 (2020) 606-623. |
[43] |
B. Wen, M. Ca, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26 (2014) 3484-3489.
DOI URL |
[44] |
Y. Shi, D. Li, Y. Wei, C. Gong, J. Zhang, Compos. Commun. 28 (2021) 100919.
DOI URL |
[45] |
M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang, L. Zhang, C. Gong, J. Phys. D: Appl. Phys. 53 (2020) 02LT01.
DOI URL |
[46] |
H. Lv, Z. Yang, H. Pan, R. Wu, Prog. Mater. Sci. 127 (2022) 100946.
DOI URL |
[47] | H. Lv, X. Zhou, G. Wu, U. Karaa, X. Wang, J. Mater. Chem. A 9 (2021) 19710. |
[48] |
H. Lv, Z. Yang, C. Wei, H. Liao, Y. Du, G. Ji, Z. Xu, Adv. Funct. Mater. 29 (2019) 1900163.
DOI URL |
[49] |
F. Wu, L. Wan, T. Wang, M. Tariq, T. Shah, P. Liu, Q. Zhang, B. Zhang, J. Mater. Sci. Technol. 117 (2022) 36-48.
DOI URL |
[50] | M. Zhang, X. Fang, Y. Zhang, J. Guo, C. Gong, D. Estevez, F. Qin, J. Zhang, Nan- otechnology 31 (2020) 275707. |
[51] | F. Wu, K. Yang, Q. Li, T. Shah, B. Zhang, Carbon N Y 173 (2021) 918-931. |
[1] | Yaping Wang, Qianqian Wang, Guoyi Wu, Hengxue Xiang, Mugaanire Tendo Innocent, Mian Zhai, Chao Jia, Peng Zou, Jialiang Zhou, Meifang Zhu. Ultra-fast bacterial inactivation of Cu2O@halloysite nanotubes hybrids with charge adsorption and physical piercing ability for medical protective fabrics [J]. J. Mater. Sci. Technol., 2022, 122(0): 1-9. |
[2] | Jun He, Shengtao Gao, Yuanchun Zhang, Xingzhao Zhang, Hanxu Li. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 104(0): 98-108. |
[3] | Chunhua Sun, Zirui Jia, Shuang Xu, Dongqi Hu, Chuanhui Zhang, Guanglei Wu. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 128-137. |
[4] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
[5] | Yihan Chen, Longxing Su, Mingming Jiang, Xiaosheng Fang. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection [J]. J. Mater. Sci. Technol., 2022, 105(0): 259-265. |
[6] | Fan Wang, Weihua Gu, Jiabin Chen, Qianqian Huang, Mingyang Han, Gehuan Wang, Guangbin Ji. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption [J]. J. Mater. Sci. Technol., 2022, 105(0): 92-100. |
[7] | Rui Guo, Qi Zheng, Lianjun Wang, Yuchi Fan, Wan Jiang. Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 108-117. |
[8] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
[9] | Siyao Guo, Yunfeng Bao, Ying Li, Hailong Guan, Dongyi Lei, Tiejun Zhao, Baomin Zhong, Zhihong Li. Super broadband absorbing hierarchical CoFe alloy/porous carbon@carbon nanotubes nanocomposites derived from metal-organic frameworks [J]. J. Mater. Sci. Technol., 2022, 118(0): 218-228. |
[10] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
[11] | Siyao Cheng, Cheng Zhang, Hao Wang, Jinrui Ye, Yan Li, Qiu Zhuang, Wei Dong, Aming Xie. Carbon nanofilm stabilized twisty V2O3 nanorods with enhanced multiple polarization behavior for electromagnetic wave absorption application [J]. J. Mater. Sci. Technol., 2022, 119(0): 37-44. |
[12] | Yue Liu, Xuehua Liu, Xinyu E, Bingbing Wang, Zirui Jia, Qingguo Chi, Guanglei Wu. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103(0): 157-164. |
[13] | Jiashun Wang, Linlin Wang, Jiangyong Diao, Xi Xie, Guoming Lin, Qing Jia, Hongyang Liu, Guoxin Sui. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene [J]. J. Mater. Sci. Technol., 2022, 103(0): 209-214. |
[14] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
[15] | Fei Pan, Lei Cai, Yanyan Dong, Xiaojie Zhu, Yuyang Shi, Wei Lu. Mixed-dimensional hierarchical configuration of 2D Ni2P nanosheets anchored on 1D silk-derived carbon fiber for extraordinary electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 101(0): 85-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||