J. Mater. Sci. Technol. ›› 2022, Vol. 127: 98-107.DOI: 10.1016/j.jmst.2022.02.041
• Research Article • Previous Articles Next Articles
Shuo Suna, Yang Yangb, Chenxu Hanb, Guixun Suna, Yan Chena, Hongxiang Zongb,*(), Jiangjiang Huc,*(
), Shuang Hana,*(
), Xiaozhou Liaod, Xiangdong Dingb, Jianshe Liana
Received:
2021-11-27
Revised:
2022-01-31
Accepted:
2022-02-06
Published:
2022-11-10
Online:
2022-11-10
Contact:
Hongxiang Zong,Jiangjiang Hu,Shuang Han
About author:
shuanghan@jlu.edu.cn (S. Han)Shuo Sun, Yang Yang, Chenxu Han, Guixun Sun, Yan Chen, Hongxiang Zong, Jiangjiang Hu, Shuang Han, Xiaozhou Liao, Xiangdong Ding, Jianshe Lian. Unveiling the grain boundary-related effects on the incipient plasticity and dislocation behavior in nanocrystalline CrCoNi medium-entropy alloy[J]. J. Mater. Sci. Technol., 2022, 127: 98-107.
Fig. 1. Pristine microstructures of NC CrCoNi, CG CrCoNi and NC Ni. (a) XRD patterns of the NC/CG CrCoNi and NC Ni samples, revealing only a single FCC phase in each sample. Insets are (a1) an EBSD band contrast image and (a2) a bright-field TEM image of CG CrCoNi. (b, c) EDS elemental maps of the NC CrCoNi and CG CrCoNi, respectively, showing uniform elemental distributions. (d, h) Bright-field plan-view TEM images, (e, i) cross-section TEM images, (f, j) grain-size distributions and (g, k) HRTEM images of NC CrCoNi and NC Ni, respectively.
Fig. 2. Typical indentation P-h curves for the three materials: (a) NC CrCoNi, (b) CG CrCoNi and (c) NC Ni. Multiple pop-ins appear in the P-h curves of NC and CG CrCoNi, as marked by red arrows, while no obvious pop-in presents for NC Ni. (d) Pop-in width versus pop-in load under the loading strain rate of 0.004/s for NC CrCoNi and CG CrCoNi.
Fig. 3. Representative P-h curves of NC CrCoNi and CG CrCoNi with Hertzian fitting analysis as presented by solid lines. The Hertzian fitting analysis is presented by solid red lines.
Fig. 4. Maximum shear stress and activation volume of the first pop-in. Cumulative probability of the pop-in events versus maximum shear stress of (a) NC CrCoNi and (b) CG CrCoNi at different loading strain rates. Relation between $\text{ln}\left[ -\ln \left( 1-F \right) \right]$ and ${{P}^{1/3}}$ for (c) NC CrCoNi and (d) CG CrCoNi at three loading strain rates.
Fig. 5. Incipient plasticity of NC CrCoNi and NC Ni in MD simulations. The simulated P-h curve of (a) NC Ni and (d) NC CrCoNi. (b, c) The snapshots of microstructure evolution during the indentation in NC Ni, which correspond to the points c and d in the P-h curves in (a). Defect structures immediately (e) before and (f) after the first pop- in NC CrCoNi, which correspond to the points e and f in the P-h curves in (d). Two pre-existing SF (marked by red arrows) were erased, leaving a SF debris (marked by a blue arrow). (g) Typical atomic configurations upon the erasing of pre-existing stacking faults by Shockley partials upon nano-indentation in CrCoNi. (g1) Partials nucleate from the junction of the stacking faults and grain boundaries. (g2) Partials move toward the opposite direction of pre-existing stacking faults, which will be erased after the partial slipping. (g3) Atomic configuration after a full erasing of the pre-existing stacking faults. Green atoms have a perfect FCC local structure while dislocations and GBs are colored by red and white, respectively.
Fig. 7. Influence of GB chemistry on the nano-scale pinning-depinning events during dislocations motion. (a) Comparison of the displacement of dislocations with time under different GB chemistries. The corresponding evolution of dislocation line morphology is shown in (b) NC Ni and (c) NC CrCoNi.
Fig. 8. Schematics illustration showing the influence of GB on the dislocation expansion. Schematics showing the revolution of a dislocation loop beneath the indentation tip in (a) CG CrCoNi and (b) NC CrCoNi.
Fig. 9. Typical deformed microstructure around an indent in NC CrCoNi. (a) Bright-field TEM image showing nano-grains in the vicinity of the indent. The inset shows the indent with triangle geometry. (b) HRTEM image showing tangled dislocations, SFs and nano-twins within the nano-grains. Dislocations are marked by red “⊥”, and SFs are marked by green arrows.
[1] |
D.B. Miracle, O. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[2] | B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (1) (2016) 1-8. |
[3] |
F. Otto, A. Dlouhý, C. Somsen, H.B. Bei, G. Eggeler, E. George, Acta Mater 61 (2013) 5743-5755.
DOI URL |
[4] |
P. Gao, Z. Ma, J. Gu, S. Ni, T. Suo, Y. Li, M. Song, Y.-.W. Mai, X. Liao, Sci. China Mater. 65 (2022) 811-819.
DOI URL |
[5] | D. Xu, M. Wang, T. Li, X. Wei, Y. Lu, Microstructures 2 (2022) 2022001. |
[6] |
Z.G. Zhu, Q. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
[7] |
J. Su, D. Raabe, Z.M. Li, Acta Mater 163 (2019) 40-54.
DOI URL |
[8] |
B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S. Mishra, R. Banerjee, Scr. Mater. 162 (2019) 18-23.
DOI URL |
[9] |
D.-.H. Lee, J.-.M. Park, G.H. Yang, J. He, Z.P. Lu, J.-.Y. Suh, M. Kawasaki, U. Ra-mamurty, J.-.I. Jang, Scr. Mater. 163 (2019) 24-28.
DOI URL |
[10] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
[11] |
Z.M. Yang, D.S. Yan, W.J. Lu, Z.M. Li, Mater. Sci. Eng. A 801 (2021) 140441.
DOI URL |
[12] |
P. Gao, S. Sun, H. Li, R.M. Niu, S. Han, H.X. Zong, H. Wang, J.S. Lian, X.Z. Liao, J. Mater. Sci. Technol. 106 (2022) 1-9.
DOI URL |
[13] |
Y. Zou, J.M. Wheeler, H. Ma, P. Okle, R. Spolenak, Nano Lett. 17 (2017) 1569-1574.
DOI PMID |
[14] |
Y. Ma, G.J. Peng, D.H. Wen, T.H. Zhang, Mater. Sci. Eng. A 621 (2015) 111-117.
DOI URL |
[15] | W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, Z.Y. Fu, Inter-metallics 56 (2015) 24-27. |
[16] |
N.T.-C. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, C.S. Lee, H.S. Kim, Nat. Commun. 11 (2020) 1-7.
DOI URL |
[17] | M. Dada, P. Popoola, N. Mathe, S. Adeosun, S. Pityana, Int. J. Lightweight Mater. Manuf. 4 (2021) 339-345. |
[18] |
R.S. Ganji, P.S. Karthik, K.B.S. Rao, K.V. Rajulapati, Acta Mater 125 (2017) 58-68.
DOI URL |
[19] |
S. Sun, P. Gao, G.X. Sun, Z.Y. Cai, J.J. Hu, S. Han, J.S. Lian, X.Z. Liao, J. Alloy. Compd. 830 (2020) 154656.
DOI URL |
[20] |
M. Sebastiani, K. Johanns, E.G. Herbert, G.M. Pharr, Curr. Opin. Solid State Mater. Sci. 19 (2015) 324-333.
DOI URL |
[21] |
K.F. Gan, D.S. Yan, S.Y. Zhu, Z.M. Li, Acta Mater 206 (2021) 116633.
DOI URL |
[22] |
Y.X. Ye, Z.P. Lu, T.G. Nieh, Scr. Mater. 130 (2017) 64-68.
DOI URL |
[23] |
H. Somekawa, C.A. Schuh, Acta Mater 59 (2011) 7554-7563.
DOI URL |
[24] |
L. Wang, H.B. Bei, T.L. Li, Y.F. Gao, E.P. George, T.G. Nieh, Scr. Mater. 65 (2011) 179-182.
DOI URL |
[25] |
C. Zhu, Z. Lu, T.G.Nieh P, Acta Mater 61 (2013) 2993-3001.
DOI URL |
[26] |
S.-.P. Wang, J. Xu, J. Mater. Sci. Technol. 35 (2019) 812-816.
DOI URL |
[27] |
Y.X. Ye, B. Ouyang, C.Z. Liu, G. Duscher, T.G. Nieh, Acta Mater 199 (2020) 413-424.
DOI URL |
[28] |
D. Wang, X. Lu, M.C. Lin, D. Wan, Z.M. Li, J.Y. He, R. Johnsen, J. Mater. Sci. Technol. 98 (2022) 118-122.
DOI URL |
[29] |
D. Wang, X. Lu, Y. Deng, D. Wan, Z. Li, A. Barnoush, Intermetallics 114 (2019) 106605.
DOI URL |
[30] |
X.F. Yang, Y.Z. Xi, C.Y. He, H. Chen, X.C. Zhang, S. Tu, Scr. Mater. 209 (2022) 114364.
DOI URL |
[31] |
F.-.H. Cao, Y.-.J. Wang, L.-.H. Dai, Acta Mater 194 (2020) 283-294.
DOI URL |
[32] |
N.X. Zhou, T. Hu, J. Luo, Curr. Opin. Solid State Mater. Sci. 20 (2016) 268-277.
DOI URL |
[33] |
S.J. Zhao, J. Alloy. Compd. 887 (2021) 161314.
DOI URL |
[34] |
F.H. Cao, Y. Chen, S.T. Zhao, E. Ma, L.H. Dai, Acta Mater 209 (2021) 116786.
DOI URL |
[35] |
Z.Q. Fu, B.E. MacDonald, D.L. Zhang, B.Y. Wu, W.P. Chen, J. Ivanisenko, H. Hahn, E.J. Lavernia, Scr. Mater. 143 (2018) 108-112.
DOI URL |
[36] |
D.-.H. Lee, I.-.C. Choi, G.H. Yang, Z.P. Lu, M. Kawasaki, U. Ramamurty, R. Schwaiger, J.-.I. Jang, Scr. Mater. 156 (2018) 129-133.
DOI URL |
[37] |
E. Borodin, A. Mayer, M.Y. Gutkin, Int. J. Plast. 134 (2020) 102776.
DOI URL |
[38] |
N.K. Aragon, J.D. Gravell, I. Ryu, Acta Mater 223 (2022) 117455.
DOI URL |
[39] |
Z.Q. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H.M. Wen, W. Xiong, D.L. Zhang, Y.Z. Zhou, T.J. Rupert, W.P. Chen, Sci. Adv. 4 (10) (2018) eaat8712.
DOI URL |
[40] |
Z. Wang, C. Wang, Y.-.L. Zhao, Y.-.C. Hsu, C.-.L. Li, J.-.J. Kai, C.-.T. Liu, C.-.H. Hsueh, Int. J. Plast. 131 (2020) 102726.
DOI URL |
[41] |
J.J. Hu, G.X. Sun, X.P. Zhang, G.Y. Wang, Z.H. Jiang, S. Han, J.Y. Zhang, J.S. Lian, J. Alloy. Compd. 647 (2015) 670-680.
DOI URL |
[42] |
Q.-.J. Li, H. Sheng, E. Ma, Nat. Commun.. 10 (2019) 1-11.
DOI URL |
[43] |
W. Shinoda, M. Shiga, M. Mikami, Phys. Rev. B 69 (2004) 134103.
DOI URL |
[44] | L. Zhang, Solid Mechanics for Engineers, Palgrave, Basingstoke, UK, 2001. |
[45] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[46] |
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18 (2009) 015012.
DOI URL |
[47] |
G. Ackland, A. Jones, Phys. Rev. B 73 (2006) 054104.
DOI URL |
[48] |
T. Ungár, A. Borbély, Appl. Phys. Lett. 69 (1996) 3173-3175.
DOI URL |
[49] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E. George, Acta Mater 128 (2017) 292-303.
DOI URL |
[50] |
X.Z. Xiao, L. Yu, Int. J. Plast. 141 (2021) 102980.
DOI URL |
[51] |
Y. Sato, S. Shinzato, T. Ohmura, T. Hatano, S. Ogata, Nat. Commun. 11 (2020) 1-9.
DOI URL |
[52] |
F. Pöhl, Sci. Rep. 9 (2019) 15350.
DOI URL |
[53] |
F. Siska, J. Cech, P. Hausild, H. Hadraba, Z. Chlup, R. Husak, L. Stratil, Mater. Sci. Eng. A 784 (2020) 139297.
DOI URL |
[54] |
B.B. He, M.X. Huang, Z.Y. Liang, A. Ngan, H.W. Luo, J. Shi, W.Q. Cao, H. Dong, Scr. Mater. 69 (2013) 215-218.
DOI URL |
[55] | K. Johnson, Contact Mechanics, Cambridge University Press, 1987. |
[56] |
J. Mason, A. Lund, C. Schuh, Phys. Rev. B 73 (2006) 054102.
DOI URL |
[57] |
G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, E. George, J. Alloy. Compd. 746 (2018) 244-255.
DOI URL |
[58] |
C. Schuh, J. Mason, A. Lund, Nat. Mater. 4 (2005) 617-621.
PMID |
[59] |
Q. He, J. Zeng, S. Wang, Y. Ye, C. Zhu, T. Nieh, Z. Lu, Y. Yang, Mater. Res. Lett. 5 (2017) 300-305.
DOI URL |
[60] |
R. Yuan, I.J. Beyerlein, C.Z. Zhou, Acta Mater 90 (2015) 169-181.
DOI URL |
[61] |
I. Ovid’Ko, R. Valiev, Y. Zhu, Prog. Mater. Sci. 94 (2018) 462-540.
DOI URL |
[62] |
Y. Zhu, X. Liao, X. Wu, Prog. Mater. Sci. 57 (2012) 1-62.
DOI URL |
[63] |
S. Cheng, A.D. Stoica, X.-.L. Wang, Y. Ren, J. Almer, J. Horton, C. Liu, B. Clausen, D. Brown, P. Liaw, Phys. Rev. Lett. 103 (2009) 035502.
DOI URL |
[64] |
M. Jin, A. Minor, E. Stach, J. Morris Jr, Acta Mater 52 (2004) 5381-5387.
DOI URL |
[65] |
M. Esfahani, K.S. Munir, C. Wen, J. Zhang, Y. Durandet, J. Wang, Y.C. Wong, Surf. Coat. Technol. 333 (2018) 71-80.
DOI URL |
[66] |
J.J. Hu, W. Zhang, G.J. Peng, T.H. Zhang, Y.S. Zhang, Mater. Sci. Eng. A 725 (2018) 522-529.
DOI URL |
[67] |
J. Lian, J.E. Garay, J. Wang, Scr. Mater. 56 (2007) 1095-1098.
DOI URL |
[68] |
N.X. Zhou, T. Hu, J.J. Huang, J. Luo, Scr. Mater. 124 (2016) 160-163.
DOI URL |
[69] |
D.-.H. Lee, M.-.Y. Seok, Y.K. Zhao, I.-.C. Choi, J.Y. He, Z.P. Lu, J.-.Y. Suh, U. Rama-murty, M. Kawasaki, T.G. Langdon, Acta Mater 109 (2016) 314-322.
DOI URL |
[70] |
L.F. Zou, C.M. Yang, Y.K. Lei, D. Zakharov, J.M. Wiezorek, D. Su, Q. Yin, J. Li, Z.Y. Liu, E.A. Stach, Nat. Mater. 17 (2018) 56-63.
DOI URL |
[71] | J. Ding, Q. Yu, M. Asta, R.O. Ritchie, Proc. Natl Acad. Sci. U.S.A. 115 (2018) 8919-8924. |
[72] |
H. Van Swygenhoven, P. Derlet, A. Frøseth, Acta Mater 54 (2006) 1975-1983.
DOI URL |
[73] |
X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464 (2010) 877-880.
DOI URL |
[74] |
T.B. Britton, D. Randman, A.J. Wilkinson, J. Mater. Res. 24 (2011) 607-615.
DOI URL |
[75] |
C. Gu, J. Lian, Z. Jiang, Q. Jiang, Scr. Mater. 54 (2006) 579-584.
DOI URL |
[76] |
B. Yang, H. Vehoff, Acta Mater 55 (2007) 849-856.
DOI URL |
[1] | Siyuan Wei, Yakai Zhao, Jae-il Jang, Upadrasta Ramamurty. Rate-dependent mechanical behavior of single-, bi-, twinned-, and poly-crystals of CoCrFeNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 253-264. |
[2] | J. Christudasjustus, C.S. Witharamage, Ganesh Walunj, T. Borkar, R.K. Gupta. The influence of spark plasma sintering temperatures on the microstructure, hardness, and elastic modulus of the nanocrystalline Al-xV alloys produced by high-energy ball milling [J]. J. Mater. Sci. Technol., 2022, 122(0): 68-76. |
[3] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
[4] | Junjie Wang, Zongde Kou, Shu Fu, Shangshu Wu, Sinan Liu, Mengyang Yan, Zhiqiang Ren, Di Wang, Zesheng You, Si Lan, Horst Hahn, Xun-Li Wang, Tao Feng. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition [J]. J. Mater. Sci. Technol., 2022, 115(0): 29-39. |
[5] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[6] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
[7] | Zhongwu Liu, Jiayi He, Qing Zhou, Youlin Huang, Qingzheng Jiang. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets [J]. J. Mater. Sci. Technol., 2022, 98(0): 51-61. |
[8] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
[9] | L.G. Hou, H. Yu, Y.W. Wang, L. You, Z.B. He, C.M. Wu, D.G. Eskin, L. Katgerman, L.Z. Zhuang, J.S. Zhang. Tailoring precipitation/properties and related mechanisms for a high-strength aluminum alloy plate via low-temperature retrogression and re-aging processes [J]. J. Mater. Sci. Technol., 2022, 120(0): 15-35. |
[10] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[11] | Laishan Yang, Zhibo Dong, Lei Wang, Nikolas Provatas. Improved multi-order parameter and multi-component model of polycrystalline solidification [J]. J. Mater. Sci. Technol., 2022, 101(0): 217-225. |
[12] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[13] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Grain boundary segregation induced strong UHTCs at elevated temperatures: A universal mechanism from conventional UHTCs to high entropy UHTCs [J]. J. Mater. Sci. Technol., 2022, 123(0): 26-33. |
[14] | X.J. Guan, Z.P. Jia, S.M. Liang, F. Shi, X.W. Li. A pathway to improve low-cycle fatigue life of face-centered cubic metals via grain boundary engineering [J]. J. Mater. Sci. Technol., 2022, 113(0): 82-89. |
[15] | H.X. Xue, X.C. Cai, B.R. Sun, X. Shen, C.C. Du, X.J. Wang, T.T. Yang, S.W. Xin, T.D. Shen. Bulk nanocrystalline W-Ti alloys with exceptional mechanical properties and thermal stability [J]. J. Mater. Sci. Technol., 2022, 114(0): 16-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||