J. Mater. Sci. Technol. ›› 2022, Vol. 127: 71-77.DOI: 10.1016/j.jmst.2022.03.022
• Research Article • Previous Articles Next Articles
Kunpeng Qiana,b, Shuang Lib, Jianhui Fangb, Yuhuan Yangb,c, Shaomei Caob, Miao Miaob, Xin Fenga,b,c,*()
Received:
2022-03-01
Revised:
2022-03-30
Accepted:
2022-03-31
Published:
2022-11-10
Online:
2022-11-10
Contact:
Xin Feng
About author:
* E-mail address: fengxin@shu.edu.cn (X. Feng)Kunpeng Qian, Shuang Li, Jianhui Fang, Yuhuan Yang, Shaomei Cao, Miao Miao, Xin Feng. C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability[J]. J. Mater. Sci. Technol., 2022, 127: 71-77.
Fig. 1. (a, b) SEM images of Ti3AlC2 and accordion-like Ti3C2Tx. (c) TEM image of Ti3C2Tx MXenes. (d, e) SEM images of C60. (f, g) SEM images of CD and C60/CD complex. (h) Schematic illustration for the fabrication of aCCMF.
Fig. 2. (a-d) Cross-sectional SEM images of aCCMF1, aCCMF2, aCCMF3 and aCCMF5. (e-h) Amplified cross-sectional SEM images of aCCMF1, aCCMF2, aCCMF3 and aCCMF5. (i-l) Digital pictures and the corresponding surface SEM images of aCCMF1, aCCMF2, aCCMF3 and aCCMF5.
Fig. 3. (a) XRD patterns of pMF, pCCMF5 and aCCMF5. (b) FT-IR curves of CD, C60, C60/CD, pCCMF5 and aCCMF5. (c) XPS spectra of pCCMF5 and aCCMF5. (d) Ti 2p and (e) O 1?s XPS spectra of pCCMF5 and aCCMF5. (f) Raman spectra of CD, C60, C60/CD, pCCMF5 and aCCMF5.
Fig. 4. (a) TG/DSC curves of aCCMF5 and TG curve of CD. (b) Tensile stress-strain curves of aCMF, aCCMF1, aCCMF2, aCCMF3 and aCCMF5. (c) Tensile stress and strain at the fracture of aCMF, aCCMF1, aCCMF2, aCCMF3 and aCCMF5. (d) Digital picture of broken aCCMF5 with “zigzag” crack and the stretching diagram.
Fig. 5. (a) Electrical conductivity and thickness of the hybrid films before and after annealing treatment. (b) EMI SE of aCMF, aCCMF1, aCCMF2, aCCMF3 and aCCMF5. (c) Average SEA, SER and SET of the hybrid films before and after annealing treatment. (d) Average R, A and T coefficients of aCMF, aCCMF1, aCCMF2, aCCMF3 and aCCMF5. (e) The variation of EMI SE and electrical conductivity for aCCMF5 with folding times and the insets show the water contact angle of aCMF (left) and aCCMF5 (right). (f) The variation of EMI SE and electrical conductivity of aCCMF5 and aCMF in a humid environment (80% humidity) for 7 days. (g) EMI shielding mechanism of aCCMF.
Fig. 6. SSE/t of aCMF, aCCMF1, aCCMF2, aCCMF3 and aCCMF5 (indicated by the red star) with other EMI shielding based materials with different thicknesses. The listed numbers are the reference numbers in Supporting Material.
[1] |
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, C.M. Koo, Adv. Mater. 32 (9) (2020) 1906769.
DOI URL |
[2] |
Y. Han, K. Ruan, J. Gu, Nano Res 15 (2022) 4747-4755.
DOI URL |
[3] |
X.H. Tang, J. Li, Y. Wang, Y.X. Weng, M. Wang, Compos. Pt. B-Eng. 196 (2020) 108121.
DOI URL |
[4] |
X. Ma, B. Shen, L. Zhang, Z. Chen, Y. Liu, W. Zhai, W. Zheng, ACS Sustainable Chem. Eng. 7 (10) (2019) 9663-9670.
DOI URL |
[5] |
Z. Lu, F. Jia, L. Zhuo, D. Ning, K. Gao, F. Xie, Compos. Pt. B-Eng. 217 (2021) 108853.
DOI URL |
[6] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[7] | M.S. Cao, X.X. Wang, W.Q. Cao, J. Yuan, J. Mater. Chem.C 3 (26) (2015) 6589-6599. |
[8] |
S. Lee, I. Jo, S. Kang, B. Jang, J. Moon, J.B. Park, S. Lee, S. Rho, Y. Kim, B.H. Hong, ACS Nano 11 (6) (2017) 5318-5324.
DOI URL |
[9] |
Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Small 14 (27) (2018) 1800534.
DOI URL |
[10] |
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, ACS Nano 12 (11) (2018) 11193-11202.
DOI PMID |
[11] |
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, ACS Nano 12 (5) (2018) 4583-4593.
DOI URL |
[12] |
Y. Li, B. Shen, X. Pei, Y. Zhang, D. Yi, W. Zhai, L. Zhang, X. Wei, W. Zheng, Carbon N Y 100 (2016) 375-385.
DOI URL |
[13] |
B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng, Carbon N Y 102 (2016) 154-160.
DOI URL |
[14] |
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Compos. Part A 128 (2020) 105670.
DOI URL |
[15] |
Q. Liu, Y. Zhang, Y. Liu, C. Li, Z. Liu, B. Zhang, Q. Zhang, J. Mater. Sci. Technol. 110 (2022) 246-259.
DOI URL |
[16] | P. Song, Z. Ma, H. Qiu, Y. Ru, J. Gu, Nano-Micro Lett. 14 (2022) 51. |
[17] |
X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du, J. Mater. Chem. C 4 (9) (2016) 1860-1870.
DOI URL |
[18] |
B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8 (42) (2016) 28917-28925.
DOI URL |
[19] |
B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Nano Res 10 (1) (2016) 331-343.
DOI URL |
[20] |
Q.M. He, J.R. Tao, Y. Yang, D. Yang, K. Zhang, B. Fei, M. Wang, Composites, Part A 156 (2022) 106901.
DOI URL |
[21] |
J. Ma, M. Zhan, K. Wang, ACS Appl. Mater. Interfaces 7 (1) (2015) 563-576.
DOI URL |
[22] |
Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, S. Jiang, Compos. Part A 135 (2020) 105960.
DOI URL |
[23] | Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem. Int. Ed. 61 (2022) e202200705. |
[24] |
Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, Y. Chen, Carbon N Y 45 (4) (2007) 821-827.
DOI URL |
[25] |
N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, P. Eklund, Nano Lett 6 (6) (2006) 1141-1145.
DOI URL |
[26] |
Y. Wang, Y.N. Gao, T.N. Yue, X.D. Chen, M. Wang, Appl. Surf. Sci. 563 (2021) 150255.
DOI URL |
[27] |
B. Shen, W. Zhai, W. Zheng, Adv. Funct. Mater. 24 (28) (2014) 4542-4548.
DOI URL |
[28] |
X. Ma, Y. Li, B. Shen, L. Zhang, Z. Chen, Y. Liu, W. Zhai, W. Zheng, ACS Appl. Mater. Interfaces 10 (44) (2018) 38255-38263.
DOI URL |
[29] |
J. Li, Y. Wang, T.N. Yue, Y.N. Gao, Y.D. Shi, J.B. Shen, H. Wu, M. Wang, Compos. Sci. Technol. 206 (2021) 108681.
DOI URL |
[30] |
Y. Zhang, K. Ruan, J. Gu, Small 17 (42) (2021) 2101951.
DOI URL |
[31] |
T.B. Ma, H. Ma, K.P. Ruan, X.T. Shi, H. Qiu, S.Y. Gao, J.W. Gu, Chin. J. Polym. Sci. 40 (3) (2022) 248-255.
DOI URL |
[32] |
A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii, Sci. Adv. 4 (6) (2018) eaat0491.
DOI URL |
[33] |
J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P.A. Lynch, S. Qin, M. Han, W. Yang, J. Liu, X. Wang, Y. Gogotsi, J.M. Razal, Adv. Mater. 32 (23) (2020) 2001093.
DOI URL |
[34] |
C.J. Zhang, B. Anasori, A. Seral-Ascaso, S.H. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Adv. Mater. 29 (36) (2017) 1702678.
DOI URL |
[35] | A. Levitt, J. Zhang, G. Dion, Y. Gogotsi, J.M. Razal, Adv. Funct. Mater. 30 (47) (2020) 20 0 0739. |
[36] |
H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J.W. Chew, Adv. Mater. 30 (12) (2018) 1704561.
DOI URL |
[37] |
H. Lin, Y. Chen, J. Shi, Adv. Sci. 5 (10) (2018) 1800518.
DOI URL |
[38] |
J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu, W. Lu, J. Li, Y. Li, H. Zhang, Adv. Funct. Mater. 29 (6) (2018) 1807326.
DOI URL |
[39] |
M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, Chem. Eng. J. 359 (2019) 1265-1302.
DOI URL |
[40] |
Z. Lin, J. Liu, W. Peng, Y. Zhu, Y. Zhao, K. Jiang, M. Peng, Y. Tan, ACS Nano 14 (2) (2020) 2109-2117.
DOI URL |
[41] |
L. Wang, Z. Ma, Y. Zhang, H. Qiu, K. Ruan, J. Gu, Carbon Energy 4 (2022) 200-210.
DOI URL |
[42] |
T. Tang, S. Wang, Y. Jiang, Z. Xu, Y. Chen, T. Peng, F. Khan, J. Feng, P. Song, Y. Zhao, J. Materi. Sci. Technol. 111 (2022) 66-75.
DOI URL |
[43] |
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, N. Liu, Y. Gao, ACS Nano 12 (4) (2018) 3209-3216.
DOI URL |
[44] |
Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin, W. Huang, J. Shao, J. Yang, X. Dong, ACS Nano 12 (1) (2018) 56-62.
DOI URL |
[45] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, H.S. Man, C.M. Koo, Y.J.S. Gogotsi, Science 353 (6304) (2016) 1137-1140.
DOI URL |
[46] |
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Adv. Mater. 29 (38) (2017) 1702367.
DOI URL |
[47] |
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z.Z. Yu, Adv. Funct. Mater. 27 (45) (2017) 1702807.
DOI URL |
[48] |
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, ACS Nano 12 (11) (2018) 11193-11202.
DOI PMID |
[49] |
A. Fayyaz, K. Saravanakumar, K. Talukdar, Y. Kim, Y. Yoon, C.M. Park, Chem. Eng. J. 407 (2021) 127842.
DOI URL |
[50] | T. Andersson, K. Nilsson, M. Sundahl, G. Westman, O. Wennerström, Chem. Commun. (8) (1992) 604-606. |
[51] |
T. Braun, Á. Buvári-Barcza, L. Barcza, I. Konkoly-Thege, M. Fodor, B. Migali, Solid State Ionics 74 (1-2) (1994) 47-51.
DOI URL |
[52] |
K. Sugikawa, Y. Inoue, K. Kozawa, A. Ikeda, ChemNanoMat 4 (7) (2018) 682-687.
DOI URL |
[53] | J.F.R. Van Guyse, V.R. de la Rosa, R. Hoogenboom, Chem. 24 (11) (2018) 2758-2766. |
[54] |
T. Lin, H. Yu, L. Wang, Q. Ma, H. Huang, L. Wang, M.A. Uddin, F. Haq, D.A. Lemenovskiy, Polym. Compos. 42 (4) (2021) 1961-1976.
DOI URL |
[55] |
A. Kausar, Mater. Res. Innovations 25 (3) (2020) 175-185.
DOI URL |
[56] |
P. Roy, S. Bag, D. Chakraborty, S. Dasgupta, ACS Omega 3 (9) (2018) 12270-12283.
DOI URL |
[57] | R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao, X. Feng, ACS Appl. Mater. & Interfaces 10 (51) (2018) 44787-44795. |
[58] |
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat 1 (3) (2021) 413-431.
DOI URL |
[59] |
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (7) (2014) 992-1005.
DOI URL |
[60] |
X. Zhou, J. Wen, Z. Wang, X. Ma, H. Wu, J. Mater. Sci. Technol. 115 (2022) 148-155.
DOI URL |
[61] |
S. Huang, L. Wang, Y. Li, C. Liang, J. Zhang, J. Appl. Polymer Sci. 138 (27) (2021) 50649.
DOI URL |
[62] |
X. Jia, B. Shen, L. Zhang, W. Zheng, Compos. Pt. B-Eng. 198 (2020) 108250.
DOI URL |
[63] |
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (7529) (2014) 78-81.
DOI URL |
[64] |
M. Zhang, X. Wang, Y. Bai, Z. Li, B. Cheng, Sci. Rep. 7 (1) (2017) 4443.
DOI URL |
[65] |
P.A. Christy, A.J. Peter, S. Arumugam, C.W. Lee, P.S. Prakash, Mater. Chem. Phys. 240 (2020) 122207.
DOI URL |
[66] |
Y. Guo, S. Guo, J. Ren, Y. Zhai, S. Dong, E. Wang, ACS Nano 4 (7) (2010) 4001-4010.
DOI URL |
[67] |
Y.J. Wan, X.M. Li, P.L. Zhu, R. Sun, C.P. Wong, W.H. Liao, Compos. Pt. A 130 (2020) 105764.
DOI URL |
[68] |
C. Sun, Z. Jia, S. Xu, D. Hu, C. Zhang, G. Wu, J. Mater. Sci. Technol. 113 (2022) 128-137.
DOI URL |
[69] |
M. Sathish, K. Miyazawa, Mol. 17 (4) (2012) 3858-3865.
DOI URL |
[70] |
V. Schettino, M. Pagliai, L. Ciabini, G. Cardini, J. Phys. Chem. A 105 (50) (2001) 11192-11196.
DOI URL |
[71] |
C. Wu, K. Wang, Y. Yan, D. Yang, Y. Jiang, B. Chi, J. Liu, A.R. Esker, J. Rowe, A.J. Morris, M. Sanghadasa, S. Priya, Adv. Funct. Mater. 29 (12) (2019) 1804419.
DOI URL |
[72] |
K. Ruan, Y. Guo, J. Gu, Macromol. 54 (10) (2021) 4934-4944.
DOI URL |
[73] |
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, J. Gu, ACS Nano 14 (7) (2020) 8368-8382.
DOI URL |
[74] |
R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Chem. Mater. 27 (15) (2015) 5314-5323.
DOI URL |
[75] |
N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Adv. Mater. 26 (31) (2014) 5480-5487.
DOI URL |
[76] |
Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang, B. Wei, Adv. Mater. 29 (31) (2017) 1701583.
DOI URL |
[77] |
C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori, E. Long, S.H. Park, A. Seral-Ascaso, A. Shmeliov, D. Krishnan, C. Morant, X. Liu, G.S. Duesberg, Y. Gogotsi, V. Nicolosi, Chem. Mater. 29 (11) (2017) 4848-4856.
DOI URL |
[78] |
T.T. Liu, M.Q. Cao, Y.S. Fang, Y.H. Zhu, M.S. Cao, J. Mater. Sci. Technol. 112 (2022) 329-344.
DOI URL |
[79] |
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Nano-Micro Lett. 14 (1) (2022) 26.
DOI URL |
[80] |
Y.N. Gao, Y. Wang, T.N. Yue, B. Zhao, R. Che, M. Wang, Chem. Eng. J. 430 (2022) 132949.
DOI URL |
[1] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[2] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[3] | Huimin Xiang, Pengyun Liu, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 113(0): 138-146. |
[4] | Muhammad Mushtaq, Xianwei Guo, Zihe Zhang, Zhiyuan Lin, Xiaolong Li, Zhangquan Peng, Haijun Yu. Dual-function redox mediator enhanced lithium-oxygen battery based on polymer electrolyte [J]. J. Mater. Sci. Technol., 2022, 113(0): 199-206. |
[5] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
[6] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
[7] | DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 98(0): 248-257. |
[8] | F. Liu, Z.Y. Liu, G.Y. He, L.N. Ou. Dislocation ordering and texture strengthening of naturally aged Al-Cu-Mg alloy [J]. J. Mater. Sci. Technol., 2022, 118(0): 1-14. |
[9] | Mun Sik Jeong, Tak Min Park, Dong-Il Kim, Hidetoshi Fujii, Hye Ji Im, Pyuck-Pa Choi, Seung-Joon Lee, Jeongho Han. Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning [J]. J. Mater. Sci. Technol., 2022, 118(0): 243-254. |
[10] | H.R. Lashgari, M. Ferry, S. Li. Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications [J]. J. Mater. Sci. Technol., 2022, 119(0): 131-149. |
[11] | Yuxiao Chen, Wei Zhong, Feng Chen, Ping Wang, Jiajie Fan, Huogen Yu. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance [J]. J. Mater. Sci. Technol., 2022, 121(0): 19-27. |
[12] | Hong Hong, Lihong Jiang, Huating Tu, Jiyong Hu, Kyoung-Sik Moon, Xiong Yan, Ching-ping Wong. Rational design and evaluation of UV curable nano-silver ink applied in highly conductive textile-based electrodes and flexible silver-zinc batteries [J]. J. Mater. Sci. Technol., 2022, 101(0): 294-307. |
[13] | Xiang He, Min Wang, Fengren Cao, Wei Tian, Liang Li. Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 124(0): 243-251. |
[14] | Diyan Yang, Jihui Han, Jie Yin, Haoyue Xue, Jiagang Wu. Tailoring depolarization temperature by phase transition causing properties evolution in Bi0.5(Na1-xKx)0.5TiO3 ceramics [J]. J. Mater. Sci. Technol., 2022, 114(0): 111-119. |
[15] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||