J. Mater. Sci. Technol. ›› 2022, Vol. 127: 61-70.DOI: 10.1016/j.jmst.2022.03.024
• Research Article • Previous Articles Next Articles
Jianying Wanga, Jianpeng Zoub, Hailin Yanga,*(), Lijun Zhanga, Zhilin Liub, Xixi Dongc, Shouxun Jic
Received:
2022-01-24
Revised:
2022-02-23
Accepted:
2022-03-02
Published:
2022-11-10
Online:
2022-11-10
Contact:
Hailin Yang
About author:
* E-mail address: y-hailin@csu.edu.cn (H. Yang)Jianying Wang, Jianpeng Zou, Hailin Yang, Lijun Zhang, Zhilin Liu, Xixi Dong, Shouxun Ji. Exceptional strength-ductility synergy of additively manufactured CoCrNi medium-entropy alloy achieved by lattice defects in heterogeneous microstructures[J]. J. Mater. Sci. Technol., 2022, 127: 61-70.
Fig. 1. Characterization of pre-alloyed CoCrNi MEA powders: (a) powder particle morphology; (b) XRD spectrum; (c-e) EDS mappings for elemental distribution.
Co | Cr | Ni | Fe | C | O | N | P | S |
---|---|---|---|---|---|---|---|---|
34.9 | 30.4 | 34.5 | 0.063 | 0.0036 | 0.0015 | 0.0021 | 0.0012 | 0.00034 |
Table 1. Chemical Compositions of the CoCrNi SLMed alloy (wt.%).
Co | Cr | Ni | Fe | C | O | N | P | S |
---|---|---|---|---|---|---|---|---|
34.9 | 30.4 | 34.5 | 0.063 | 0.0036 | 0.0015 | 0.0021 | 0.0012 | 0.00034 |
Fig. 2. (a) Engineering tensile stress-strain curves of SLMed CoCrNi alloys without and with the 70% reduction in thickness and annealing at 700 °C for 2 h (RA treatment); (b) Comparison of tensile strength of CoCrNi alloys fabricated by different techniques without subsequent deformation and heat-treatment, including MA + SPS, casting, SLM in other literatures and in this study [8,16,18,28,27,40,41]; (c) Comparison of tensile properties of the as-SLMed CoCrNi alloys with RA treatment obtained from this study and CoCrNi alloys fabricated by casting + rolling, casting + HPT, SPS + rolling, and Mo/(Ti,Al)-doped CoCrNi alloys [14,24,28,45,46].
Fig. 3. SEM/BSE images showing the microstructure of SLMed CoCrNi alloys: (a) overall microstructure; (b) hierarchical microstructure consisted of columnar and equiaxed sub-grains; (c) detailed microstructure of equiaxed sub-grains; (d) detailed microstructure of columnar sub-grains; (e) heat-affected zone (HAZ); (f) prism-like sub-grains.
Fig. 4. SEM/BSE images showing the microstructure features of SLMed CoCrNi alloys with RA treatment: (a) overall microstructure; (b) refined grain structure with annealing twins at nano-sizes; (c) refined hierarchical microstructure composed of refined columnar and equiaxed sub-grains; (d) detailed microstructure showing refined hierarchical microstructure after deep inch; (e) detailed microstructure of refined columnar sub-grains; (f) detailed microstructure of equiaxed sub-grains. The yellow arrows indicate the formation of annealing twins.
Fig. 6. (a) Inverse Pole Figure (IPF) map, (b) Image Quality (IQ) map, (c) Kernel Average Misorientation (KAM) map of SLMed CoCrNi alloys; (d, e) detailed IPF maps, (f) IQ map, (g) KAM map of SLMed CoCrNi alloys with RA treatment.
Conditions | Grain size (µm) | Step size (µm) | |b| (nm) | KAM value | ρGND (m−2) |
---|---|---|---|---|---|
As-SLMed | 47.83 | 1.20 | 0.258 | 0.839 | 5.42 × 1015 |
RA treatment | 5.08 | 0.50 | 0.258 | 0.908 | 1.44 × 1016 |
Table 2. Grain size, step size selected in EBSD testing, length of the Burgers vector, KAM value and ρGND determined for SLMed CoCrNi alloys without and with RA treatment.
Conditions | Grain size (µm) | Step size (µm) | |b| (nm) | KAM value | ρGND (m−2) |
---|---|---|---|---|---|
As-SLMed | 47.83 | 1.20 | 0.258 | 0.839 | 5.42 × 1015 |
RA treatment | 5.08 | 0.50 | 0.258 | 0.908 | 1.44 × 1016 |
Fig. 7. TEM micrographs showing the microstructure of SLMed CoCrNi alloys with RA treatment: (a) TEM image and (b) STEM image of high-density dislocation-formed equiaxed sub-grains; (c) TEM image of the refined columnar sub-grains; (d) dislocation structure of dislocation walls; (e) STEM and (f) SAED pattern showing the formation of annealing twins with nano-sizes.
Fig. 8. Corresponding EDS mapping of equiaxed sub-grains (a, a1-a3) including elements (a1) Co, (a2) Cr, (a3) Ni, and columnar sub-grains (b, b1-b3) including elements (b1) Co, (b2) Cr, (b3) Ni.
Fig. 9. TEM micrographs after tensile testing of as-SLMed CoCrNi alloys with RA treatment showing (a) the formation of stacking faults, (b) the interaction between stacking faults and dislocations; (c) STEM image, (d) high-resolution TEM image and SAED (L1) showing the formation of Lomer-Cottrell locks; (e) TEM image, (f) high-resolution TEM image and SAED (L2) showing the formation of deformation twins.
Fig. 10. Schematic diagram showing (a) the coarsening hierarchical microstructure of SLMed CoCrNi alloys and (b) the refined hierarchical microstructure of the SLMed CoCrNi alloy after RA treatment.
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
DOI URL |
[3] | J.Y. Wang, H.L. Yang, H. Huang, J.P. Zou, S. Ji, Z.L. Liu, Mater. Sci. Eng. A 9 (2020) 139974. |
[4] |
X. Lu, D. Wang, Z.M. Li, Y. Deng, A. Barnoush, Mater. Sci. Eng. A 762 (2019) 138114.
DOI URL |
[5] |
J.Y. Wang, H.L. Yang, H. Huang, J.M. Ruan, S. Ji, J. Alloy. Compd. 798 (2019) 576-586.
DOI URL |
[6] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Acta Mater 138 (2017) 72-82.
DOI URL |
[7] |
Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Nat. Commun. 8 (2017) 14390.
DOI URL |
[8] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater 128 (2017) 292-303.
DOI URL |
[9] |
S. Zhao, G.M. Stocks, Y. Zhang, Acta Mater 134 (2017) 334-345.
DOI URL |
[10] |
J.B. Li, B. Gao, Y.T. Wang, X.H. Chen, Y.C. Xin, S. Tang, B. Liu, Y. Liu, M. Song, J. Alloy. Compd. 792 (2019) 170-179.
DOI URL |
[11] |
J.B. Seol, J.W. Bae, J.G. Kim, H. Sung, Z.M. Li, H.H. Lee, S.H. Shim, J.H. Jang, W.S. Ko, S.I. Hong, H.S. Kim, Acta Mater 194 (2020) 366-377.
DOI URL |
[12] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater 132 (2017) 35-48.
DOI URL |
[13] |
C.E. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, S.R. Niezgoda, Acta Mater 158 (2018) 38-52.
DOI URL |
[14] |
C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater 165 (2019) 496-507.
DOI |
[15] |
J.Y. Wang, W.H. Li, H.L. Yang, H. Huang, S. Ji, J.M. Ruan, Z.L. Liu, Corros. Sci. 177 (2020) 108973.
DOI URL |
[16] |
B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H.B. Bei, Z.G. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 10602-10609.
DOI PMID |
[17] |
J.S. Miao, C. Slone, S. Dasari, M. Ghazisaeidi, R. Banerjee, E.P. George, M.J. Mills, Acta Mater 210 (2021) 116829.
DOI URL |
[18] |
J.Y. Wang, H.L. Yang, J.M. Ruan, Y. Wang, S. Ji, J. Mater. Res. 34 (2019) 1-11.
DOI URL |
[19] | I. Moravick, L. Gouvea, J. Cupera, I. Dlouhy, J. Alloy. Compd. 5 (2018) 979-988. |
[20] |
F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater 61 (2013) 5743-5755.
DOI URL |
[21] |
R. SreeGanji, P.S. Karthik, K.B.S. Rao, K.V. Rajulapati, Acta Mater 125 (2017) 58-68.
DOI URL |
[22] |
X.Y. Li, K. Lu, Nat. Mater. 16 (2017) 700-701.
DOI URL |
[23] |
H. Wu, G. Fan, Prog. Mater. Sci. 113 (2020) 100675.
DOI URL |
[24] |
S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater. 134 (2017) 33-36.
DOI URL |
[25] | E.O. Hall, Proc. Phys. Soc. London B 64 (1951) 747. |
[26] | N.J. Petch, J. Iron Steel Inst. 174 (1653) 25. |
[27] |
I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, I. Dlouhy, Mater. Sci. Eng. A 701 (2017) 370-380.
DOI URL |
[28] |
H. Huang, J.Y. Wang, H.L. Yang, S. Ji, H.L. Yu, Z.L. Liu, Scr. Mater. 188 (2020) 216-221.
DOI URL |
[29] |
E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74 (2015) 401-477.
DOI URL |
[30] |
R.D. Li, M.B. Wang, Z.M. Li, P. Cao, T.C. Yuan, H.B. Zhu, Acta Mater 193 (2020) 83-98.
DOI URL |
[31] |
H.L. Yang, Y.Y. Zhang, J.Y. Wang, Z.L. Liu, C.H. Liu, S.X. Ji, J. Mater. Sci. Technol. 91 (2021) 215-223.
DOI URL |
[32] |
H. Gong, K. Raf, H. Gu, G.D. Janaki Ram, T. Starr, B. Stucker, Mater. Des. 86 (2015) 545-554.
DOI URL |
[33] |
W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater 85 (2015) 74-84.
DOI URL |
[34] |
D.D. Dong, C. Chang, H. Wang, X.C. Yan, W.Y. Ma, M. Liu, S.H. Deng, J. Gardan, R. Bolot, H.L. Liao, J. Mater. Sci. Technol. 73 (2021) 151-164.
DOI URL |
[35] |
L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.-.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today. 21 (2018) 354-361.
DOI URL |
[36] | D.Y. Deng, R.L. Peng, J. Moverare, Mater. Sci. Eng. A 21 (2020) 140072. |
[37] |
X.Q. Wang, L.N. Carter, B. Pang, M.M. Attallah, M.H. Loretto, Acta Mater 128 (2017) 87-95.
DOI URL |
[38] |
J.B. Gao, Y.T. Jin, Y.Q. Fan, D. Xu, L. Meng, C. Wang, Y.P. Yu, D.L. Zhang, J. Mater. Sci. Technol. 102 (2022) 159-165.
DOI URL |
[39] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
[40] |
B.L. Han, C.C. Zhang, K. Feng, Z.G. Li, X.C. Zhang, Y. Shen, X.D. Wang, H. Kokawa, R.F. Li, Z.Y. Wang, P.K. Chu, Mater. Sci. Eng. A 820 (2021) 141545.
DOI URL |
[41] |
P.D. Niu, R.D. Li, K.F. Gan, T.C. Yuan, S.Y. Xie, C. Chao, Metall. Mater. Trans. A 52 (2021) 753-766.
DOI URL |
[42] |
R.L. Ma, C.Q. Peng, Z.Y. Cai, R.C. Wang, Z.H. Zhou, X.G. Li, X.Y. Cao, Mater. Sci. Eng. A 775 (2020) 138975.
DOI URL |
[43] |
T. Zhang, H.G. Li, H. Gong, Y.X. Wu, A.S. Ahmad, X. Chen, J. Alloy. Compd. 884 (2021) 161050.
DOI URL |
[44] |
L. Lemarquis, P.F. Giroux, H. Mskrot, B. Barkia, O. Hercher, P. Castany, J. Mater. Res. Technol. 15 (2021) 4725-4736.
DOI URL |
[45] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater 102 (2016) 187-196.
DOI URL |
[46] |
R.B. Chang, W. Fang, H.Y. Yu, X. Bai, X. Zhang, B.X. Liu, F.X. Yin, Scr. Mater. 172 (2019) 144-148.
DOI URL |
[47] |
Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson, J. Gu, J. Alloy. Compd. 785 (2019) 1144-1159.
DOI URL |
[48] |
X.L. Ma, C.X. Huang, J. Moering, M. Ruppert, H.W. HÖppel, M. GÖken, J. Narayan, Y. Zhu, Acta Mater 116 (2016) 43-52.
DOI URL |
[49] |
S.C. Li, C.Y. Guo, L.L. Hao, Y.L. Kang, Y.G. An, Mater. Sci. Eng. A 759 (2019) 624-632.
DOI URL |
[50] |
M. Zaiser, E.C. Aifantis, Scr. Mater. 48 (2003) 133-139.
DOI URL |
[51] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2018) 63-71.
DOI URL |
[52] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
[53] |
U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273.
DOI URL |
[54] |
M.D. Sangid, T. Ezaz, H. Sehitoglu, I.M. Robertson, Acta Mater 59 (2011) 283-296.
DOI URL |
[55] |
Y.L. Zhang, J.G. Li, X.G. Wang, Y.P. Lu, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 35 (2019) 902-906.
DOI |
[56] |
J.H. Lee, T.B. Holland, A.K. Mukherjee, X.H. Zhang, H.Y. Wang, Sci. Rep. 3 (2013) 1061.
DOI URL |
[57] |
Y.M. Wang, M. Chen, F. Zhou, E. Ma, Nature 419 (2002) 912.
DOI URL |
[58] | X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 14501-14505. |
[59] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater 165 (2019) 444-458.
DOI |
[60] | M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 7224-7229. |
[61] |
S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath, Acta Mater 45 (1997) 2633-2638.
DOI URL |
[62] |
A. Rohatgi, K.S. Vecchio, G.T. Gray, Metall. Mater. Trans. A 32 (2001) 135-145.
DOI URL |
[63] |
X.P. Chen, L.F. Li, H.F. Sun, L.X. Wang, Q. Liu, Mater. Sci. Eng. A 622 (2015) 108-113.
DOI URL |
[1] | Min Feng, Chengyang Jiang, Minghui Chen, Shenglong Zhu, Fuhui Wang. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation [J]. J. Mater. Sci. Technol., 2022, 120(0): 139-149. |
[2] | Sensen Chai, Shiyu Zhong, Qingshan Yang, Daliang Yu, Qingwei Dai, Hehe Zhang, Limeng Yin, Gang Wang, Zongxiang Yao. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 108-117. |
[3] | Wenjie Lu, Xian Luo, Dou Ning, Miao Wang, Chao Yang, Miaoquan Li, Yanqing Yang, Pengtao Li, Bin Huang. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 195-201. |
[4] | H.Y. Song, M.C. Lam, Y. Chen, S. Wu, P.D. Hodgson, X.H. Wu, Y.M. Zhu, A.J. Huang. Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC [J]. J. Mater. Sci. Technol., 2022, 112(0): 301-314. |
[5] | Yu Lu, Richard Turner, Jeffery Brooks, Hector Basoalto. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 117-127. |
[6] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[7] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
[8] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[9] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
[10] | Heng Duan, Bin Liu, Ao Fu, Junyang He, Tao Yang, C.T. Liu, Yong Liu. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 99(0): 207-214. |
[11] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[12] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[13] | Heng Ma, Xin Liu, Ning Liu, Yan Zhao, Yongguang Zhang, Zhumabay Bakenov, Xin Wang. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 115(0): 140-147. |
[14] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[15] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||