J. Mater. Sci. Technol. ›› 2022, Vol. 126: 1-14.DOI: 10.1016/j.jmst.2022.02.036
Special Issue: Ceramics 2022
• Research Article • Next Articles
Da-Wang Tana,b, Zhen-Yong Laoa, Wei-Ming Guoa(
), Akira Kondob, Takahiro Kozawa, Makio Naitob, Kevin Plucknetta, Hua-Tay Lina,*(
)
Received:2021-11-11
Revised:2022-02-15
Accepted:2022-02-18
Published:2022-11-01
Online:2022-11-10
Contact:
Wei-Ming Guo,Hua-Tay Lin
About author:huataylin@comcast.net (H.-T. Lin)Da-Wang Tan, Zhen-Yong Lao, Wei-Ming Guo, Akira Kondo, Takahiro Kozawa, Makio Naito, Kevin Plucknett, Hua-Tay Lin. Fabrication and modelling of Si3N4 ceramics with radial grain alignment generated through centripetal sinter-forging[J]. J. Mater. Sci. Technol., 2022, 126: 1-14.
Fig. 1. Schematic representations of: (a) the pre-sintering step, (b) the CSF process, (c) the conventional sinter-forging approach, and (d) the relative orientations of the surfaces, and grain angles that were examined after sinter-forging.
Fig. 2. Schematic diagram for the strength testing orientations, with: (a) the fracture plane orthogonal to the centripetal direction, and (b) the fracture plane parallel to the centripetal direction.
Fig. 3. Representative XRD patterns for: (a) the precursor powder mixture (α-Si3N4 plus sintering additives), and (b) the partially densified, disc-shaped sample.
Fig. 4. XRD patterns for the CSF ceramic, recorded from: (a) the SO surface, (b) the SPP surface, and (c) the SPO surface, (d) the JCPDS standard data for β-Si3N4, with the expected peak intensities shown for an isotropic scenario.
Fig. 6. Representative SEM images of the microstructures of the CSF processed β-Si3N4 ceramics on: (a) the SO plane, (b) the SPP plane, and (c) the SPO plane, (d) SEM image of the microstructure of an SO equivalent surface for a conventionally sinter-forged sample, as a comparison. The arrows point at the centripetal direction in each case.
Fig. 7. Distribution of the grain inclination angle values on: (a) the SO plane, and (b) the SPP plane of the CSF ceramic, (c) distribution of the grain inclination angle values on the SO plane of the conventionally sinter-forged β-Si3N4 ceramic, (d) the distribution of grain diameters measure on the SPO plane.
| Hardness type | Vickers hardness (GPa) | Toughness type | Indentation toughness (MPa·m0.5) | Strength type | Flexural strength (MPa) |
|---|---|---|---|---|---|
| On SO plane | 17.01 ± 0.31 | SO-PC | 4.69 ± 0.32 | Type O | 1264 ± 66 |
| SO-OC | 6.96 ± 0.34 | Type P | 846 ± 54 | ||
| On SPP plane | 16.58 ± 0.20 | SPP-PC | 4.06 ± 0.23 | ||
| SPP-OC | 7.53 ± 0.41 | ||||
| On SPO plane | 15.85 ± 0.27 | SPO-PP | 5.70 ± 0.13 | ||
| SPO-OP | 5.06 ± 0.33 |
Table 1. The measured Vickers hardness, indentation fracture toughness, and flexural strength in each of the different orientation directions.
| Hardness type | Vickers hardness (GPa) | Toughness type | Indentation toughness (MPa·m0.5) | Strength type | Flexural strength (MPa) |
|---|---|---|---|---|---|
| On SO plane | 17.01 ± 0.31 | SO-PC | 4.69 ± 0.32 | Type O | 1264 ± 66 |
| SO-OC | 6.96 ± 0.34 | Type P | 846 ± 54 | ||
| On SPP plane | 16.58 ± 0.20 | SPP-PC | 4.06 ± 0.23 | ||
| SPP-OC | 7.53 ± 0.41 | ||||
| On SPO plane | 15.85 ± 0.27 | SPO-PP | 5.70 ± 0.13 | ||
| SPO-OP | 5.06 ± 0.33 |
Fig. 9. Morphology of: (a) a Vickers indentation on the SPP plane, (b) crack propagation parallel to radial direction on the SPP plane, (c) crack propagation orthogonal to radial direction on the SO plane, and (d) crack propagation on the SPO plane.
Fig. 11. Fundamental physical model of: (a) the three-dimensional size variations of the sample during CSF, and (b) the Euler angles of a grain in the Cartesian coordinate system, where the long axis of the grain coincides with the X axis.
Fig. 12. The variations of: (a) the difference between ϕ?f and ϕ?i with ϕ?i, (b) θ?f with ϕ?, with ε = -0.55, Kt = -0.6, and Kr = 1.6, as experimental conditions.
Fig. 13. Predicted grain angles at the local position in the deformation, with ε = -0.55, Kt = -0.6, and Kr = 1.6, for: (a) random initial angles, (b) the distribution of initial angles between the grain long axis orientation and radial direction, (c) the alignment angles for the final state material, and (d) the distribution of final angles between the grain and radial direction.
Fig. 14. Predicted aligned angles of the local grain in final state, with ε = -0.55, Kt = -0.6, and Kr = 1.6, for: (a) the variation of θ?SOf with different ϕ?f and θ?f, (b) the distribution of θ?SOf, (c) the variation of θ?SPPf by different ϕ?f and θ?f, and (d) the distribution of θ?SPPf.
Fig. 15. Illustrations of: (a) the shear strain observation procedure, with a laser cut path marked within the partially sintered compact, and (b) the laser marked path observed from SPP plane of the sample after CSF, as well as a representation of the velocity variation and grain rotation at different positions within the sample.
| [1] | F.L. Riley, J. Am. Ceram. Soc., 83 (2000), pp. 245-265. |
| [2] | Z. Zhang, X. Duan, B. Qiu, Z. Yang, D. Cai, P. He, D. Jia, Y. Zhou, J. Adv. Ceram., 8 (2019), pp. 289-332. |
| [3] | D.S. Park, M.J. Choi, T.W. Roh, H.D. Kim, B.D. Han, J. Mater. Res., 15 (2000), pp. 130-135. |
| [4] | X.W. Zhu, Y. Sakka, Y. Zhou, K. Hirao, K. Itatani, J. Eur. Ceram. Soc., 34 (2014), pp. 2585-2589. |
| [5] | K. Watari, K. Hirao, M.E. Brito, M. Toriyama, S. Kanzaki, J. Mater. Res., 14 (1999), pp. 1538-1541. |
| [6] | F. Lee, K.J. Bowman, J. Am. Ceram. Soc., 75 (1992), pp. 1748-1755. |
| [7] | L. Zou, D.S. Park, B.U. Cho, Y. Huang, H.D. Kim, Mater. Lett., 58 (2004), pp. 1587-1592. |
| [8] | K. Hirao, M. Ohashi, M.E. Brito, S. Kanzaki, J. Am. Ceram. Soc., 78 (1995), pp. 1687-1690. |
| [9] | D.S. Park, C.W. Kim, J. Mater. Sci., 34 (1999), pp. 5827-5832. |
| [10] | H. Teshima, K. Hirao, M. Toriyama, S. Kanzaki, J. Ceram. Soc. Jpn., 107 (1999), pp. 1216-1220. |
| [11] | M. Belmonte, P. Miranzo, M.I. Osendi, J. Am. Ceram. Soc., 90 (2007), pp. 1157-1163. |
| [12] | D.W. Tan, W.M. Guo, Z.Y. Lao, R.L. Lin, H.T. Lin, J. Eur. Ceram. Soc., 41 (2021), pp. 6059-6063. |
| [13] | X.W. Zhu, Y. Sakka, Y. Zhou, K. Hirao, K. Itatani, J. Eur. Ceram. Soc., 34 (2014), pp. 2585-2589. |
| [14] | X. Zhu, T. Suzuki, T. Uchikoshi, Y. Sakka, Key Eng. Mater., 368 (2008), pp. 871-874 |
| [15] | X.W. Zhu, Y. Sakka, T.S. Suzuki, T. Uchikoshi, S. Kikkawa, Acta Mater., 58 (2010), pp. 146-161. |
| [16] | E.V. Zaretsky, Y.P. Chiu, T.E. Tallian, J. Mater. Eng., 11 (1989), pp. 237-253. |
| [17] | H. Kaya, Compos. Sci. Technol., 59 (1999), pp. 861-872. |
| [18] | W.J. MoberlyChan, J.J. Cao, L.C. De Jonghe, Acta Mater., 46 (1998), pp. 1625-1635. |
| [19] | G.C. Quan, K.T. Conlon, D.S. Wilkinson, J. Eur. Ceram. Soc., 27 (2007), pp. 389-396. |
| [20] | X. Hong, A. Xing, H.S. Yang, Wear, 148 (1991), pp. 171-180. |
| [21] | F.K. Lotgering, J. Inorg. Nucl. Chem., 9 (1959), pp. 113-123. |
| [22] | A.G. Evans, E.A. Charles, J. Am. Ceram. Soc., 59 (1976), pp. 371-372. |
| [23] | S. Hampshire, M.J. Pomeroy, J. Eur. Ceram. Soc., 32 (2012), pp. 1925-1932. |
| [24] | Y.Q. Ding, Z.S. Ding, Z.H. Jiang, J. Non Cryst. Solids, 112 (1989), pp. 408-412. |
| [25] | L. Donzel, A. Lakki, R. Schaller, Philos. Mag. A, 76 (1997), pp. 933-944. |
| [26] | Q.G. Jiang, J. Liu, W.M. Guo, W. Liu, L.X. Cheng, M.F. Gong, S.H. Wu, J. Am. Ceram. Soc., 98 (2015), pp. 2696-2699. |
| [27] | N. Kondo, Y. Suzuki, T. Miyajima, T. Ohji, J. Eur. Ceram. Soc., 23 (2003), pp. 809-815. |
| [28] | N. Kondo, T. Ohji, F. Wakai, J. Mater. Sci. Lett., 17 (1998), pp. 45-47. |
| [29] | D. Chakraborty, J. Mukerji, Mater. Res. Bull., 17 (1982), pp. 843-849. |
| [30] | J.C. Hay, E.Y. Sun, G.M. Pharr, P.F. Becher, K.B. Alexander, J. Am. Ceram. Soc., 81 (1998), pp. 2661-2669. |
| [31] | D.S. Park, M.J. Choi, T.W. Roh, H.D. Kim, B.D. Han, J. Mater. Res., 15 (2000), pp. 130-135. |
| [32] | M. Nakamura, K. Hirao, Y. Yamauchi, S. Kanzaki, J. Am. Ceram. Soc., 84 (2001), pp. 2579-2584. |
| [33] | B. Waters, C.G. Westmoreland, J. Am. Ceram. Soc., 81 (1998), pp. 2821-2830. |
| [34] | C. Ye, Y. Jiang, X. Yue, H. Ru, H. Jia, Y. E, Q. Ren, S. Sun, W. Wang, C. Zhang, Mater. Sci. Eng. A, 731 (2018), pp. 140-148. |
| [35] | K.P. Plucknett, M. Quinlan, L. Garrido, L. Genova, Mater. Sci. Eng. A, 489 (2008), pp. 337-350. |
| [36] | H. Yamamoto, K. Akiyama, Y. Murakami, J. Eur. Ceram. Soc., 26 (2006), pp. 1059-1067. |
| [37] | D.W. Tan, L.L. Zhu, W.X. Wei, J.J. Yu, Y.Z. Zhou, W.M. Guo, H.T. Lin, Ceram. Int., 46 (2020), pp. 26182-26189. |
| [38] | A.J. Pyzik, D.F. Carroll, Annu. Rev. Mater. Sci., 24 (1994), pp. 189-214. |
| [39] | P.F. Becher, G.S. Painter, N. Shibata, R.L. Satet, M.J. Hoffmann, S.J. Pennycook, Mat. Sci. Eng. A, 422 (2006), pp. 85-91. |
| [40] | F. Lee, K.J. Bowman, J. Am. Ceram. Soc., 77 (1994), pp. 1947-1953. |
| [41] | N.C. Gay, Tectonophysics, 5 (1968), pp. 81-88. |
| [42] | G. Jeffery, Proc. R. Soc. Lond. Ser. A, 102 (1922), pp. 161-179. |
| [43] | Z Adamczyk, T.G.M. Van De Ven, J. Colloid Interface Sci., 80 (1981), pp. 340-356. |
| [44] | B.D Bowen, S. Levine, N. Epstein, J. Colloid Interface Sci., 54 (1976), pp. 375-390. |
| [45] | Y.N. Liang, S.W. Lee, D.S. Park, Wear, 225-229 (1999), pp. 1327-1337. |
| [46] | H. Hyuga, M.I. Jones, K. Hirao, Y. Yamauchi, J. Am. Ceram. Soc., 88 (2005), pp. 1239-1243. |
| [47] | N. Hirosaki, S. Ogata, C. Kocer, H. Kitagawa, Y. Nakamura, Phys. Rev. B, 65 (2002), Article 134110. |
| [48] | K. Hirao, J. Ceram. Soc. Jpn., 114 (2006), pp. 665-671. |
| [1] | Jin-Kui Meng, Li Liu, Jian-Tang Jiang, Guo Huang, Liang Zhen. Fracture behaviors of commercially pure titanium under biaxial tension: Experiment and modeling [J]. J. Mater. Sci. Technol., 2023, 140(0): 176-186. |
| [2] | Yuan Teng, Yuqing Li, Xiaochang Xu, Ming Yue, Weiqiang Liu, Dongtao Zhang, Hongguo Zhang, Qingmei Lu, Weixing Xia. Microstructure evolution of hot-deformed SmCo-based nanocomposites induced by thermo-mechanical processing [J]. J. Mater. Sci. Technol., 2023, 138(0): 193-202. |
| [3] | Xudong Liu, Jiangkun Fan, Kai Cao, Fulong Chen, Ruihao Yuan, Degui Liu, Bin Tang, Hongchao Kou, Jinshan Li. Creep anisotropy behavior, deformation mechanism, and its efficient suppression method in Inconel 625 superalloy [J]. J. Mater. Sci. Technol., 2023, 133(0): 58-76. |
| [4] | Shiwei Xu, Congcong Zhu, Zhanhong Lin, Chen Jin, S. Kamado, K. Oh-ishi, Yun Qin. Dynamic microstructure evolution and mechanical properties of dilute Mg-Al-Ca-Mn alloy during hot rolling [J]. J. Mater. Sci. Technol., 2022, 129(0): 1-14. |
| [5] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
| [6] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
| [7] | Shuying Chen, Weidong Li, Ling Wang, Tao Yuan, Yang Tong, Ko-Kai Tseng, Jien-Wei Yeh, Qingang Xiong, Zhenggang Wu, Fan Zhang, Tingkun Liu, Kun Li, Peter K. Liaw. Stress-controlled fatigue of HfNbTaTiZr high-entropy alloy and associated deformation and fracture mechanisms [J]. J. Mater. Sci. Technol., 2022, 114(0): 191-205. |
| [8] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
| [9] | Jie Tang, Mingcai Liu, Guowei Bo, Fulin Jiang, Chunhui Luo, Jie Teng, Dingfa Fu, Hui Zhang. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling [J]. J. Mater. Sci. Technol., 2022, 116(0): 130-150. |
| [10] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
| [11] | Yingchun Liu, Hongjun Zhang, Wenming Shi, Qian Wang, Guicheng jiang, Bin Yang, Wenwu Cao, Jiubin Tan. Ultrahigh strain in textured BCZT-based lead-free ceramics with CuO sintering agent [J]. J. Mater. Sci. Technol., 2022, 117(0): 207-214. |
| [12] | Yifeng Wang, Yilin Song, Kaikai Song, Lin Pan, Changchun Chen, Kunihito Koumoto, Qingfeng Liu. Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation [J]. J. Mater. Sci. Technol., 2022, 117(0): 251-258. |
| [13] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
| [14] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
| [15] | Lei Lei, Qinyang Zhao, Cong Wu, Yongqing Zhao, Shixing Huang, Weiju Jia, Weidong Zeng. Variant selection, coarsening behavior of α phase and associated tensile properties in an α+β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 101-113. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
