J. Mater. Sci. Technol. ›› 2022, Vol. 129: 1-14.DOI: 10.1016/j.jmst.2022.03.029
• Research Article • Next Articles
Shiwei Xua,b,*(), Congcong Zhua,*(
), Zhanhong Linc, Chen Jinc, S. Kamadod, K. Oh-ishie, Yun Qinf
Received:
2021-12-26
Revised:
2022-03-02
Accepted:
2022-03-02
Published:
2022-05-15
Online:
2022-05-15
Contact:
Shiwei Xu,Congcong Zhu
About author:
congcongzhu@hnu.edu.cn (C.Zhu).Shiwei Xu, Congcong Zhu, Zhanhong Lin, Chen Jin, S. Kamado, K. Oh-ishi, Yun Qin. Dynamic microstructure evolution and mechanical properties of dilute Mg-Al-Ca-Mn alloy during hot rolling[J]. J. Mater. Sci. Technol., 2022, 129: 1-14.
Fig. 1. The microstructures of the AXM050703 slab after homogenization at 500 °C for 24 h: (a, b) optical micrographs, (c) TEM image, (d) [10-10] selected area electron diffraction (SAED) pattern of Mg2Ca phase, (e) EBSD image, (f) texture obtained from the RD-ND planes.
Fig. 2. Typical optical micrographs of the AXM050703 alloy samples after hot rolling to thickness reductions of (a, d, g, j) 10%, (b, e, h, k) 20% and (c, f, i, l) 40% at the slab temperature of 400 °C. (a-f) were observed on the RD-ND plane and (g-l) were observed on the RD-TD plane.
Fig. 3. EBSD results on the RD-ND plane of the AXM050703 alloy samples after hot rolling to thickness reductions of (a, b) 10%, (c, d) 20% and (e, f, g, h) 40% at 400 °C (The correlated OM microstructures are shown in Fig. 2(a-f)).
Fig. 4. TEM images on the RD-ND plane of the AXM050703 alloy samples after hot rolling to thickness reduction of 40% at the slab temperature of 400 °C. (a, b) shows the double twin DRX, (c, d) shows the kinks.
Fig. 5. Textures of the AXM050703 alloy samples after hot rolling to thickness reductions of (a, b) 10%, (c) 20% and (d, e, f) 40% at the slab temperatures of (a-e) 400 °C and (f) 350 °C. (a-d) were obtained from the RD-ND planes, (e, f) were obtained from the RD-TD plane.
Fig. 6. EBSD results on the RD-ND plane of the AXM050703 alloy samples after hot rolling to thickness reduction of 20% at the slab temperatures of (a, c) 350 °C and (b, d) 400 °C, showing the influence of slab temperatures on the rolled microstructures.
Fig. 7. Microstructures of the AXM050703 alloy samples after hot rolling to thickness reduction of 40% at the slab temperature of 350 °C: (a, b) EBSD image shows the double twins; (c) EBSD image shows the kinks; (d) TEM image shows the kinks and twins.
Fig. 8. (a) Change of sample temperature during hot rolling of Type 2 and Type 3 samples, (b) typical optical micrograph, (c) (0001) pole figure and (d) distribution of misorientation angle of Type 2 samples after rough rolling.
Fig. 9. The (0001) and (11-20) pole figures on the RD-TD planes of the completely rolled (a) Type 2 and (b) Type 3 samples. And the (0001) 〈11-20〉 basal slip schmid factors for (c, d, e) Type 2 and (f, g, h) Type 3 samples, (c, f) 0° samples, (d, g) 45° samples and (e, h) 90° samples.
Fig. 10. (a, b) EBSD results and (c, d) SEM images on the RD-TD planes of (a, c) Type 2 and (b, d) Type 3 samples, (e) DRXed grain size distribution histogram obtained from the RD-TD planes of Type 2 and Type 3 samples.
Fig. 12. The stress-strain curves obtained from tensile tests on the (a) Type 2 and (b) Type 3 samples. For comparison, the σTPS of commercial AZ31B sheet [4] and T6-treated medium-strength 6061 aluminum alloy [53] are also included.
Alloys | σUPS (MPa) | σTPS (MPa) | εf% | |
---|---|---|---|---|
Type 2 Samples | 0° | 308 | 261 | 6 |
45° | 308 | 281 | 8 | |
90° | 315 | 285 | 14 | |
Type 3 Samples | 0° | 289 | 280 | 18 |
45° | 277 | 254 | 19 | |
90° | 274 | 225 | 15 | |
AZ31B [ | 290 | 220 | 15 | |
6061-T6 [ | 310 | 275 | 12 |
Table 1. Comparison of the reported values and the experimental values obtained from the tensile tests.
Alloys | σUPS (MPa) | σTPS (MPa) | εf% | |
---|---|---|---|---|
Type 2 Samples | 0° | 308 | 261 | 6 |
45° | 308 | 281 | 8 | |
90° | 315 | 285 | 14 | |
Type 3 Samples | 0° | 289 | 280 | 18 |
45° | 277 | 254 | 19 | |
90° | 274 | 225 | 15 | |
AZ31B [ | 290 | 220 | 15 | |
6061-T6 [ | 310 | 275 | 12 |
[1] |
F. Pan, M. Yang, X. Chen, J. Mater. Sci. Technol. 32 (2016) 1211-1221.
DOI URL |
[2] |
H.C. Pan, R. Kang, J.R. Li, H.B. Xie, Z.R. Zeng, Q.Y. Huang, C.L. Yang, Y.P. Ren, G.W. Qin, Acta Mater. 186 (2020) 278-290.
DOI URL |
[3] | H. Zhang, G.S. Huang, D.Q. Kong, G.F. Sang, B. Song, J. Mater. Sci. Technol. 211 (2011) 1575-1580. |
[4] | S. Kamado, H. Ohara, Y. Kojima, Advanced Manufacturing Technologies of Mag- nesium Alloys, First Ed., CMC Books, Tokyo, 2005. |
[5] | Haitham El Kadiri J. Kapil A.L. Oppedal L.G. Hector Jr., Sean R. Agnew M. Cherkaoui S.C. Vogel, Acta Mater. 61 (2013) 3549-3563. |
[6] |
X.Z. Jin, W.C. Xu, D.B. Shan, B. Guo, B.J. Cheng, Mater. Des. 199 (2021) 109384.
DOI URL |
[7] |
J.C. Li, X.C. Meng, Y.L. Li, L. Wan, Y.X. Huang, Mater. Lett. 289 (2021) 129414.
DOI URL |
[8] |
Y.W. Gui, Y.J. Cui, H.K. Bian, Q.A. Li, L.X. Ouyang, A. Chiba, J. Mater. Sci. Technol. 80 (2021) 279-296.
DOI URL |
[9] |
B. Song, Q.S. Yang, T. Zhou, L.J. Chai, N. Guo, T.T. Liu, S.F. Guo, R.L. Xin, J. Mater. Sci. Technol. 35 (2019) 2269-2282.
DOI |
[10] |
L. Han, H. Hu, D.O. Northwood, Mater. Lett. 62 (3) (2008) 381-384.
DOI URL |
[11] | Y. Jung, W. Yang, Y. Kim, S. Kim, Y. Yoon, H. Lim, D. Kim, J. Magnes. Alloys 9 (2021) 1619-1631. |
[12] |
L. Zhang, K.K. Deng, K.B. Nie, F.J. Xu, K. Su, W. Liang, Mater. Sci. Eng. A 636 (2015) 279-288.
DOI URL |
[13] |
Z.T. Li, X.D. Zhang, M.Y. Zheng, X.G. Qiao, K. Wu, C. Xu, S. Kamado, Mater. Sci. Eng. A 682 (2017) 423-432.
DOI URL |
[14] |
P. Peng, J. She, A.T. Tang, J.Y. Zhang, K. Song, Q.S. Yang, F.S. Pan, J. Alloys Compd. 890 (2021) 161789.
DOI URL |
[15] |
L. Shao, C. Zhang, C.Y. Li, A.T. Tang, J.G. Liu, Z.W. Yu, F.S. Pan, Mater. Charact. 183 (2022) 111651.
DOI URL |
[16] |
T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, S. Kamado, Acta Mater. 130 (2017) 261-270.
DOI URL |
[17] |
M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59 (2011) 3646-3658.
DOI URL |
[18] | J. Hofstetter, S. Rüedi, I. Baumgartner, H. Kilian, B. Mingler, E. Povoden-Karad- eniz, S. Pogatscher, P.J. Uggowitzer, J.F. Löffler, Acta Mater. 98 (2015) 423-432. |
[19] |
T. Homma, S. Hirawatari, H. Sunohara, S. kamado, Mater. Sci. Eng. A 539 (2012) 163-169.
DOI URL |
[20] |
R.G. Li, J.F. Nie, G.J. Huang, Y.C. Xin, Q. Liu, Scr. Mater. 64 (2011) 950-953.
DOI URL |
[21] | M.Z. Bian, X.S. Huang, Yasumasa Chino, Acta Mater. 220 (2021) 117328. |
[22] |
Z.J. Zhang, L. Yuan, D.B. Shan, B. Guo, Mater. Sci. Eng. A 827 (2021) 142036.
DOI URL |
[23] |
X.X. Wei, L. Jin, C.L. Liu, F.H. Wang, S. Dong, J. Dong, Mater. Sci. Eng. A 802 (2021) 140674.
DOI URL |
[24] |
T. Nakata, C. Xu, R. Ajima, K. Shimizu, S. Hanaki, T.T. Sasaki, L. Ma, K. Hono, S. Kamado, Acta Mater. 130 (2017) 261-270.
DOI URL |
[25] |
M. Bian, X. Huang, Y. Chino, Acta Mater. 220 (2021) 117328.
DOI URL |
[26] |
G.S. Han, D. Chen, G. Chen, J.H. Huang, J. Mater. Sci. Technol. 34 (2018) 2063-2206.
DOI URL |
[27] |
S.W. Xu, K. Oh-ishi, S. Kamado, S. Uchida, T. Homma, K. Hono, Scr. Mater. 65 (2011) 269-272.
DOI URL |
[28] |
S.W. Xu, K. Oh-ishi, S. Kamado, H. Takahashi, T. Homma, Mater. Sci. Eng. A 542 (2012) 71-78.
DOI URL |
[29] |
T. Nakata, T. Mezaki, C. Xu, K. Oh-ishi, K. Shimizu, S. Hanaki, S. Kamado, J. Alloys Compd. 648 (2015) 428-437.
DOI URL |
[30] |
J. Victoria-Hernandez, S. Yi, D. Letzig, D. Hernandez-Silva, J. Bohlen, Acta Mater. 61 (2013) 2179-2193.
DOI URL |
[31] |
S.W. Xu, M.Y. Zheng, S. Kamado, K. Wu, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 528 (2011) 4055-4067.
DOI URL |
[32] |
J.H. Cho, H.W. Kim, S.B. Kang, T.S. Han, Acta Mater. 59 (2011) 5638-5651.
DOI URL |
[33] |
H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Homma, E.H. Han, Scr. Mater. 64 (2011) 141-144.
DOI URL |
[34] |
I. Basu, T. Al-Samman, G. Gottstein, Mater. Sci. Eng. A 579 (2013) 50-56.
DOI URL |
[35] |
Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, J.F. Nie, Scr. Mater. 108 (2015) 6-10.
DOI URL |
[36] |
W.J. Kim, Y.G. Lee, M.J. Lee, J.Y. Wang, Y.B. Park, Scr. Mater. 65 (2011) 1105-1108.
DOI URL |
[37] |
S.W. Xu, S. Kamado, T. Homma, Scr. Mater. 61 (2009) 644-647.
DOI URL |
[38] | X.Y. Yang, J. Xing, H. Miura, T. Sakai, Mater. Sci. Forum 503-504 (2006) 521-526. |
[39] |
L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, Mater. Charact. 170 (2020) 110697.
DOI URL |
[40] | F.C. Frank, A.N. Stroh, Proc. Phys. Soc. 65 (1952) 811. |
[41] |
K.H. Kim, B.C. Suh, J.H. Bae, M.S. Shim, S. Kim, N.J. Kim, Scr. Mater. 63 (2010) 716-720.
DOI URL |
[42] |
H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, Q. Liu, Acta Mater. 128 (2017) 313-326.
DOI URL |
[43] |
J. Bohlen, M.R. Nurnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mater. 55 (2007) 2101-2112.
DOI URL |
[44] |
E.C. Burke, W.R. Hibbard Jr., JOM 4 (1952) 295-303.
DOI URL |
[45] |
T. Mayama, M. Noda, R. Chiba, Mitsutoshi Kuroda, Int. J. Plasticity 27 (2011) 1916-1935.
DOI URL |
[46] |
A.G. Zhou, M.W. Barsoum, Metall. Mater. Trans. A 40 (2009) 1741-1756.
DOI URL |
[47] |
H. Somekawa, D. Ando, K. Hagihara, M. Yamasaki, Y. Kawamura, Mater. Charact. 179 (2021) 111348.
DOI URL |
[48] |
L. Wang, J. Sabisch, E.T. Lilleodden, Scr. Mater. 111 (2016) 68-71.
DOI URL |
[49] |
E. Roberts, P.G. Partridge, Acta Metall. 14 (1966) 513-527.
DOI URL |
[50] |
Y.C. Xin, M.Y. Wang, Z. Zeng, G.J. Huang, Q. Liu, Scr. Mater. 64 (2011) 986-989.
DOI URL |
[51] |
S.W. Xu, M.Y. Zheng, S. Kamado, K. Wu, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 528 (2011) 4055-4067.
DOI URL |
[52] | Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Zhihua Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, F.S. Pan, J. Magnes. Alloy 9 (2021) 1922-1941. |
[53] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[54] |
H. Liu, C. Sun, C. Wang, Y.H. Lia, J. Bai, F. Xue, A.B. Ma, J.H. Jiang, J. Mater. Sci. Technol. 59 (2020) 61-71.
DOI URL |
[55] |
Y.Q. Li, H.M. Zhang, X.Q. Shang, M.X. Liu, S.L. Zhao, Z.S. Cui, Int. J. Plasticity 152 (2022) 103244.
DOI URL |
[56] | J. Gilbert Kaufman, Inc. and ASM International,Properties of Aluminum Alloys, first ed.ed., Aluminum Associ- ation, New York, 1999. |
[1] | Haibo Zhang, Metin Örnek, Simanta Lahkar, Shuangxi Song, Xiaodong Wang, Richard A. Haber, Kolan Madhav Reddy. Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide [J]. J. Mater. Sci. Technol., 2022, 99(0): 148-160. |
[2] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
[3] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[4] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[5] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[6] | Xuan Kong, Yang Liu, Minghui Chen, Tao Zhang, Qunchang Wang, Fuhui Wang. Heterostructured NiCr matrix composites with high strength and wear resistance [J]. J. Mater. Sci. Technol., 2022, 105(0): 142-152. |
[7] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[8] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[9] | Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy [J]. J. Mater. Sci. Technol., 2022, 106(0): 1-9. |
[10] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[11] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[12] | Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review [J]. J. Mater. Sci. Technol., 2022, 120(0): 227-252. |
[13] | J. Fu, H. Li, X. Song, M.W. Fu. Multi-scale defects in powder-based additively manufactured metals and alloys [J]. J. Mater. Sci. Technol., 2022, 122(0): 165-199. |
[14] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[15] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||