J. Mater. Sci. Technol. ›› 2022, Vol. 121: 245-255.DOI: 10.1016/j.jmst.2021.12.066
• Research Article • Previous Articles Next Articles
Y. Leia, J. Suna, X.G. Songa,*(
), M.X. Yangb, T.L. Yanga, J. Yinc
Received:2021-09-21
Revised:2021-12-21
Accepted:2021-12-22
Published:2022-09-10
Online:2022-03-17
Contact:
X.G. Song
About author:*E-mail address: xgsong@hitwh.edu.cn (X.G. Song).1 high-entropy alloys (HEAs); 2 base metal (BM); 3 Proeutectic Zone (PEZ); 4 Eu-tectic Zone (EZ)
Y. Lei, J. Sun, X.G. Song, M.X. Yang, T.L. Yang, J. Yin. Eutectic-reaction brazing of Al0.3CoCrFeNi high-entropy alloys using Ni/Nb/Ni interlayers[J]. J. Mater. Sci. Technol., 2022, 121: 245-255.
Fig. 2. Interfacial microstructure of the Al0.3CoCrFeNi joint brazed at 1240 °C for 10 min. (a, b) BSE images; (c) line scanning results of red line profile in Fig. 2(b).
| Points | Al | Co | Cr | Fe | Ni | Nb | Possible phase |
|---|---|---|---|---|---|---|---|
| A | 3.74 | 17.00 | 20.05 | 20.15 | 35.19 | 3.87 | Ni(s, s) |
| B | 4.83 | 15.13 | 17.19 | 17.05 | 40.33 | 5.47 | FCC phase |
| C | 1.22 | 18.90 | 13.90 | 14.37 | 29.39 | 22.21 | Nb-rich IMC |
| D | 1.20 | 4.76 | 7.10 | 6.57 | 8.20 | 72.17 | Nb(s, s) |
Table 1. Chemical composition (at.%) of points A-D in Fig. 2(b).
| Points | Al | Co | Cr | Fe | Ni | Nb | Possible phase |
|---|---|---|---|---|---|---|---|
| A | 3.74 | 17.00 | 20.05 | 20.15 | 35.19 | 3.87 | Ni(s, s) |
| B | 4.83 | 15.13 | 17.19 | 17.05 | 40.33 | 5.47 | FCC phase |
| C | 1.22 | 18.90 | 13.90 | 14.37 | 29.39 | 22.21 | Nb-rich IMC |
| D | 1.20 | 4.76 | 7.10 | 6.57 | 8.20 | 72.17 | Nb(s, s) |
Fig. 3. TEM-EDS results of partial EZ. (a) HADDF image and the corresponding elemental distribution images of (b) Al, (c) Cr, (d) Fe, (e) Ni, (f) Nb, (g) Co, (h) Al, Co, Cr, Fe, Nb, Ni.
Fig. 4. TEM characterization of the EZ enclosed by a blue dashed line marked in Fig. 3(a). (a) BF image; (b, c) SAED patterns and HRTEM image of phase B; (d, e) SAED patterns and HRTEM of phase C; (f) HRTEM image of the phase B/phase C interface; (g) BF image of partial EZ; (h) HAADF image of the magnified region in (g); (i) EDS line results along the direction of black line in (h); (j) EDS mapping scan results of the region in (h).
Fig. 6. Microstructures of the Al0.3CoCrFeNi joints brazed at different temperatures for 10 min. (a) 1180 °C, (b) 1200 °C, (c) 1220 °C, (d) 1240 °C, (e) 1260 °C, (f) 1280 °C, (g) 1300 °C, (h) 1320 °C.
| Points | Al | Co | Cr | Fe | Ni | Nb | Possible phases |
|---|---|---|---|---|---|---|---|
| E | 2.24 | 0.70 | 1.44 | 2.34 | 2.36 | 90.92 | Nb(s, s) |
| F | 0.07 | 0.53 | 0.43 | 1.04 | 51.22 | 46.71 | Nb7Ni6 |
| G | - | 0.25 | 0.47 | 3.52 | 75.91 | 19.86 | NbNi3 |
| H | 2.11 | 0.19 | 3.09 | 0.91 | 89.81 | 3.90 | Ni(s, s) |
| I | 5.22 | 12.25 | 14.98 | 15.24 | 46.55 | 5.76 | γ phase |
| J | - | 16.14 | 13.78 | 14.58 | 33.78 | 21.71 | Laves phase |
| K | - | - | - | - | 9.34 | 90.66 | Nb(s, s) |
Table 2. Chemical compositions (at.%) of the points E-K in Fig. 6.
| Points | Al | Co | Cr | Fe | Ni | Nb | Possible phases |
|---|---|---|---|---|---|---|---|
| E | 2.24 | 0.70 | 1.44 | 2.34 | 2.36 | 90.92 | Nb(s, s) |
| F | 0.07 | 0.53 | 0.43 | 1.04 | 51.22 | 46.71 | Nb7Ni6 |
| G | - | 0.25 | 0.47 | 3.52 | 75.91 | 19.86 | NbNi3 |
| H | 2.11 | 0.19 | 3.09 | 0.91 | 89.81 | 3.90 | Ni(s, s) |
| I | 5.22 | 12.25 | 14.98 | 15.24 | 46.55 | 5.76 | γ phase |
| J | - | 16.14 | 13.78 | 14.58 | 33.78 | 21.71 | Laves phase |
| K | - | - | - | - | 9.34 | 90.66 | Nb(s, s) |
Fig. 8. Nano-indentation results of the joint brazed at 1260 °C for 10 min: (a) distribution of the hardness and the elastic modulus across the brazing joint, (b) typical load-depth plots.
Fig. 9. Fracture morphologies of the joints brazed at different temperatures for 10 min. (a, b) 1180 °C; (c, d) 1200 °C; (e, f) 1260 °C; (g, h) 1300 °C; (i, j) 1320 °C; (k, l) Schematic diagram of fracture paths of the joints brazed at 1260 °C and 1300 °C for 10 min.
| [1] |
J.W. Yeh, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Ysau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
| [2] | S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. 21 (2011) 433-446. |
| [3] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93. |
| [4] | S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang, JOM 67 (2015) 2340-2344. |
| [5] |
D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, Acta Mater. 123 (2017) 285-294.
DOI URL |
| [6] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 (2018) 2-22.
DOI URL |
| [7] |
C. van der Eijk, Z.K. Sallom, O.M. Akselsen, Scr. Mater. 58 (2008) 779-781.
DOI URL |
| [8] |
Y. Lin, J.T. Xiong, Y.J. Du, J. Ren, J.M. Shi, J.L. Li, J. Mater. Sci. Technol. 61 (2021) 176-185.
DOI URL |
| [9] | C. Lin, R.K. Shiue, S.K. Wu, H.L. Huang, Entropy 21 (2019) |
| [10] | S. Li, J. Li, J. Shi, Y. Du, Y. Peng, F. Jin, J. Xiong, F. Zhang, Mater. Sci. Eng. A 804 (2021) |
| [11] | C. Lin, R.K. Shiue, S.K. Wu, H.L. Huang, Crystals 9 (2019) |
| [12] | H. Li, W. Shen, W. Chen, W. Wang, G. Liu, C. Lu, W. Zheng, Y. Ma, J. Yang, Z. Ding, H. Zou, Y. He, J. Alloy. Compd. 860 (2021) |
| [13] | G. Wang, G. Sheng, Q. Yu, J. Sun, R. Li, X. Yuan, Y. Zhang, Mater. Sci. Eng. A 800 (2021) |
| [14] | G. Wang, G. Sheng, J. Sun, Y. Wei, X. Gao, Z. Yu, X. Yuan, J. Alloy. Compd. 829 (2020) |
| [15] | G. Wang, G. Sheng, Q. Yu, X. Yuan, J. Sun, Y. Jiao, Y. Zhang, Intermetallics 126 (2020) |
| [16] |
H.P. Xiong, W. Mao, Y.H. Xie, W.L. Guo, X.H. Li, Y.Y. Cheng, Mater. Lett. 61 (2007) 4662-4665.
DOI URL |
| [17] | H. Okamoto, M.E. Schlesinger, E.M. Mueller, Binary Alloy Phase Diagrams, ASM International, 2016. |
| [18] |
H. Jiang, L. Jiang, D. Qiao, Y. Lu, T. Wang, Z. Cao, T. Li, J. Mater. Sci. Technol. 33 (2017) 712-717.
DOI |
| [19] |
H. Jiang, D. Qiao, Y. Lu, Z. Ren, Z. Cao, T. Wang, T. Li, Scr. Mater. 165 (2019) 145-149.
DOI URL |
| [20] |
W. Huo, H. Zhou, F. Fang, Z. Xie, J. Jiang, Mater. Des. 134 (2017) 226-233.
DOI URL |
| [21] |
J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M. De Hosson, Acta Mater. 131 (2017) 206-220.
DOI URL |
| [22] |
L. Zheng, F. Li, Y. Zhou, J. Am. Ceram. Soc. 95 (2012) 2028-2034.
DOI URL |
| [23] |
Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu, J.J. Kai, Acta Mater. 188 (2020) 517-527.
DOI URL |
| [24] |
D.S. Grummon, J.A. Shaw, J. Foltz, Mater. Sci. Eng. A 438-440 (2006) 1113-1118.
DOI URL |
| [25] |
M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Acta Mater. 146 (2018) 211-224.
DOI URL |
| [26] |
Z.W. Yang, C.L. Wang, Y. Wang, L.X. Zhang, D.P. Wang, J.C. Feng, J. Mater. Sci. Technol. 33 (2017) 1392-1401.
DOI URL |
| [27] | Z.W. Yang, J. Lian, X.Q. Cai, Y. Wang, D.P. Wang, Y.C. Liu, L. Wang, F. Zhang, S. Yan, G. Yu, J. Chen, J. He, F. Yin, J. Alloy. Compd. 872 (2021) |
| [28] | B. Chanda, J. Das, Adv. Eng. Mater. 20 (2018) |
| [29] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
| [30] |
F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang, C.T. Liu, J. Alloy. Compd. 656 (2016) 284-289.
DOI URL |
| [31] |
Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, P.K. Liaw, Scr. Mater. 187 (2020) 202-209.
DOI URL |
| [32] |
I. Basu, J.T.M. De Hosson, Scr. Mater. 187 (2020) 148-156.
DOI URL |
| [33] | X. Wen, X. Cui, G. Jin, Y. Liu, Y. Zhang, Y. Fang, Surf. Coat. Technol. 405 (2021) |
| [34] |
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Intermetallics 60 (2015) 1-8.
DOI URL |
| [35] |
B. Gwalani, D. Choudhuri, V. Soni, Y. Ren, M. Styles, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Acta Mater. 129 (2017) 170-182.
DOI URL |
| [36] | Y.L. Zhao, Y.R. Li, G.M. Yeli, J.H. Luan, S.F. Liu, W.T. Lin, D. Chen, X.J. Liu, J.J. Kai, C.T. Liu, T. Liu, T. Yang, Y.R. Li, Y. Tong, Acta Mater. 223 (2022) |
| [37] | D. Liang, C. Wei, F. Ren, Mater. Sci. Eng. A 806 (2021) |
| [38] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165 (2019) 228-240.
DOI URL |
| [39] |
B. Gwalani, V. Soni, D. Choudhuri, M. Lee, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Scr. Mater. 123 (2016) 130-134.
DOI URL |
| [40] |
W. Luo, C. Kirchlechner, J. Zavašnik, W. Lu, G. Dehm, F. Stein, Acta Mater. 184 (2020) 151-163.
DOI URL |
| [41] |
T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, C. Wang, Z.B. Jiao, J.J. Kai, C.T. Liu, Acta Mater. 189 (2020) 47-59.
DOI URL |
| [1] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
| [2] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
| [3] | Haohan Wang, Jinghuang Lin, Junlei Qi, Jian Cao. Joining SiO2 based ceramics: recent progress and perspectives [J]. J. Mater. Sci. Technol., 2022, 108(0): 110-124. |
| [4] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
| [5] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
| [6] | Wei Zhang, Zhichao Ma, Chaofan Li, Chaowei Guo, Dongni Liu, Hongwei Zhao, Luquan Ren. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 102-110. |
| [7] | Yue Gao, Jinting Jiu, Chuantong Chen, Katsuaki Suganuma, Rong Sun, Zhi-Quan Liu. Oxidation-enhanced bonding strength of Cu sinter joints during thermal storage test [J]. J. Mater. Sci. Technol., 2022, 115(0): 251-255. |
| [8] | L. Zhao, L. Jiang, L.X. Yang, H. Wang, W.Y. Zhang, G.Y. Ji, X. Zhou, W.A. Curtin, X.B. Chen, P.K. Liaw, S.Y. Chen, H.Z. Wang. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys [J]. J. Mater. Sci. Technol., 2022, 110(0): 269-282. |
| [9] | P. Wang, X. Liu, H. Wang, J. Cao, J. Qi, J. Feng. Releasing the residual stress of Cf/SiC-GH3536 joint by designing an Ag-Cu-Ti + Sc2(WO4)3 composite filler metal [J]. J. Mater. Sci. Technol., 2022, 108(0): 102-109. |
| [10] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
| [11] | Xuehui Yan, Peter K. Liaw, Yong Zhang. Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates [J]. J. Mater. Sci. Technol., 2022, 110(0): 109-116. |
| [12] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
| [13] | Bin Liu, Jifeng Wu, Yanwei Cui, Qinqing Zhu, Guorui Xiao, Siqi Wu, Guang-han Cao, Zhi Ren. Structural evolution and superconductivity tuned by valence electron concentration in the Nb-Mo-Re-Ru-Rh high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 85(0): 11-17. |
| [14] | Tao Xiang, Zeyun Cai, Peng Du, Kun Li, Zongwei Zhang, Guoqiang Xie. Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2021, 90(0): 150-158. |
| [15] | Yujie Chen, Xianghai An, Sam Zhang, Feng Fang, Wenyi Huo, Paul Munroe, Zonghan Xie. Mechanical size effect of eutectic high entropy alloy: Effect of lamellar orientation [J]. J. Mater. Sci. Technol., 2021, 82(0): 10-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
