J. Mater. Sci. Technol. ›› 2022, Vol. 120: 78-88.DOI: 10.1016/j.jmst.2021.11.062
• Research Article • Previous Articles Next Articles
Zi Yanga,*(
), Igor Erdlea, Chunhui Liub, John Banharta
Received:2021-09-15
Revised:2021-11-14
Accepted:2021-11-20
Published:2022-09-01
Online:2022-03-01
Contact:
Zi Yang
About author:* E-mail address: zi.yang@helmholtz-berlin.de (Z. Yang).Zi Yang, Igor Erdle, Chunhui Liu, John Banhart. Clustering and precipitation in Al-Mg-Si alloys during linear heating[J]. J. Mater. Sci. Technol., 2022, 120: 78-88.
Fig. 1. (a) Various sample geometries used in the experiments. Disk: DSC measurement. Platelet: hardness measurement and PALS. Meander: electrical resistivity measurement. (b) Schematic of heating device. (c) Experimental heating curves from room temperature ~20-400 °C. Inset: zoom-in of the initial temperature overshoots (arrows) deviating from perfect linear heating (broken lines). The axis labels and units for the inset are the same as for the main Fig. 1(c).
Fig. 2. Evolution of various properties during linear heating at (a) 3 K min-1 (b) 10 K min-1, (c) 50 K min-1. All are after solutionising and quenching. Precipitation stages are defined by vertical broken lines and numbered. Horizontal dotted lines represent the zero values of two of the observables. Different DSC peaks are denoted by letters a-c. Data delimited by the purple dotted line in stage 3 are further investigated in Fig. 5(b).
Fig. 3. (a-c) BF images of samples after linear heating to peak hardness, (a) 240 °C at 3 K min-1 (sample A), (b) 260 °C at 10 K min-1 (sample B), and (c) 280 °C at 50 K min-1 (sample C). (d) Representative HAADF image of a needle-shaped precipitate viewed along the needle axis. Red box marks the unit cell of the β″ structure. The lattice parameters a and c are measured after calibrating the drift distortion using the known Al lattice constant. Yellow arrows indicate the orientation relationships between the precipitate and the Al matrix. Inset shows the fast Fourier transform of the image. (e) Precipitate length distribution based on a statistics of ~150 precipitates in the three samples appearing in (a-c) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 4. Comparison of hardening caused by isothermal ageing and linear heating at (a) 3 K min-1, (b) 10 K min-1, (c) 50 K min-1. The isothermal ageing time was the same as the heating time to a given temperature, namely$t=\frac{T-{{20}^{\circ }}\text{C}}{\phi }$. Note that the ‘isothermal ageing’ curve does not represent a continuous heat treatment but a connection of individual hardnesses after isothermal ageing at various temperatures for various times.
Fig. 5. (a) Fitting of peak b in the DSC trace of 3 K min-1 (Fig. 2(a)) using one positive and one negative Gaussian function. (b) Electrical resistivity change as a function of DSC integral at the peak b. Data taken from the marked ranges in Fig. 2. Arrows point at the positions of the peak b. Dashed and dotted lines represent the two stages. For 50 K min-1, due to fluctuations of the resistivity data it is hard to determine two stages.
Fig. 6. Experimental DSC cluster peaks (a) and simulated cluster peaks in linear heating (b) using the model and parameters developed in Ref. [34]. Values below the peaks in (a) and beside the peaks in (b) denote the integrated peak areas.
Fig. 7. (a) Hardness plotted as a function of DSC integral for various heating rates. The red-shaded region is further replotted in (b) where the hardness increment relative to the state before linear heating is presented, featuring a linear relationship $\text{ }\!\!\Delta\!\!\text{ }\mathcal{H}\propto {{Q}_{\text{int}}}$. The green-shaded area in (a) represents a square root relationship$\text{ }\!\!\Delta\!\!\text{ }\mathcal{H}\propto \sqrt{{{Q}_{\text{int}}}}$. (b) also includes data of cluster hardening during linear heating at 10 K min-1 of samples after natural ageing (NA) for 1 h (Fig. S5).
Fig. 8. Representation of the phenomena occurring in Fig. 4 using the model and parameters in Ref. [34] to explain the role of excess vacancies during ageing. “Isothermal” at temperature T refers to ageing for a time t=T-20°Cϕ, corresponding to given reference heating rate ϕ.
| [1] | C. Haase, H. Wurst, Z. Metall. 33 (1941) 399-403. |
| [2] | C. Panseri, T. Federighi, J. Inst. Met. Lond. 94 (1966) 99-197. |
| [3] |
I. Kovács, J. Lendvai, E. Nagy, Acta Metall. 20 (1972) 975-983 Metall.
DOI URL |
| [4] |
J. Banhart, M.D.H. Lay, C.S.T. Chang, A.J. Hill, Phys. Rev. B 83 (2011) 014101.
DOI URL |
| [5] |
S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Acta Mater. 59 (2011) 3352-3363.
DOI URL |
| [6] |
C.D. Marioara, S.J. Andersen, J. Jansen, H.W. Zandbergen, Acta Mater. 51 (2003) 789-796.
DOI URL |
| [7] |
M.W. Zandbergen, Q. Xu, A. Cerezo, G.D.W. Smith, Acta Mater. 101 (2015) 136-148.
DOI URL |
| [8] |
X. Zhang, M. Liu, H. Sun, J. Banhart, Materialia 8 (2019) 100441.
DOI URL |
| [9] |
H.R. Shercliff, M.F. Ashby, Acta Metall. Mater. 38 (1990) 1789-1802.
DOI URL |
| [10] |
O.R. Myhr, O. Grong, S.J. Andersen, Acta Mater. 49 (2001) 65-75.
DOI URL |
| [11] |
S. Esmaeili, D.J. Lloyd, W.J. Poole, Acta Mater. 51 (2003) 2243-2257.
DOI URL |
| [12] |
D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Gamier, F. Bourlier, Acta Mater. 62 (2014) 129-140.
DOI URL |
| [13] |
S.Q. Zhu, H.C. Shih, X.Y. Cui, C.Y. Yu, S.P. Ringer, Acta Mater. 203 (2021) 116455.
DOI URL |
| [14] | D.W. Pashley, J.W. Rhodes, A. Sendorek, J. Inst. Met. Lond. 94 (1966) 41-49. |
| [15] |
J. Banhart, C.S.T. Chang, Z.Q. Liang, N. Wanderka, M.D.H. Lay, A.J. Hill, Adv. Eng. Mater. 12 (2010) 559-571.
DOI URL |
| [16] |
M.J. Starink, Int. Mater. Rev. 49 (2004) 191-226.
DOI URL |
| [17] |
I. Dutta, S.M. Allen, J. Mater. Sci. Lett. 10 (1991) 323-326.
DOI URL |
| [18] |
G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, Acta Mater. 46 (1998) 3893-3904.
DOI URL |
| [19] |
C.S.T. Chang, J. Banhart, Metall. Mater. Trans. A 42 (2011) 1960-1964.
DOI URL |
| [20] |
Z Yang, Z Liang, D Leyvraz, J Banhart, Materialia 7 (2019) 100413.
DOI URL |
| [21] |
S. Esmaeili, D.J. Lloyd, Mater. Charact. 55 (2005) 307-319.
DOI URL |
| [22] |
R. Ivanov, A. Deschamps, F. De Geuser, Acta Mater. 157 (2018) 186-195.
DOI URL |
| [23] |
F. Lotter, D. Petschke, F. De Geuser, M. Elsayed, G. Sextl, T.E.M. Staab, Scr. Mater. 168 (2019) 104-117.
DOI URL |
| [24] |
M. Madanat, M. Liu, J. Banhart, Acta Mater. 159 (2018) 163-172.
DOI URL |
| [25] | A. Serizawa, S. Hirosawa, T. Sato, Metall. Mater. Trans. A 39 (2008) 245-251. |
| [26] |
B. Milkereit, N. Wanderka, C. Schick, O. Kessler, Mater. Sci. Eng. A 550 (2012) 87-96.
DOI URL |
| [27] |
B. Milkereit, M.J. Starink, Mater. Des. 76 (2015) 117-129.
DOI URL |
| [28] | S. Esmaeili, W.J. Poole, D.J Lloyd, Aluminum 2003 (2003) 177-185. |
| [29] |
B. Milkereit, L. Giersberg, O. Kessler, C. Schick, Materials 7 (2014) 2631-2649.
DOI URL PMID |
| [30] |
W.F. Miao, D.E. Laughlin, J. Mater. Sci. Lett. 19 (2000) 201-203.
DOI URL |
| [31] |
A.K. Gupta, D.J. Lloyd, S.A. Court, Mater. Sci. Eng. A 301 (2001) 140-146.
DOI URL |
| [32] |
D.J. Lloyd, D.R. Evans, A.K. Gupta, Can. Metall. Quart. 39 (2000) 475-481.
DOI URL |
| [33] |
F. De Geuser, B. Gault, Acta Mater. 188 (2020) 406-415.
DOI URL |
| [34] |
Z. Yang, J. Banhart, Acta Mater. 215 (2021) 117014.
DOI URL |
| [35] | M. Liu, Clustering kinetics in Al-Mg-Si alloys investigated by positron annihi- lation techniques, PhD Thesis, Berlin: Technische Universität Berlin, 2014. |
| [36] |
S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, O. Reiso, Acta Mater. 46 (1998) 3283-3298.
DOI URL |
| [37] |
Z. Matyas, Philos. Mag. 40 (1949) 324-337.
DOI URL |
| [38] |
H. Herman, J.B. Cohen, Nature 191 (1961) 63-64.
DOI URL |
| [39] | C.D. Marioara, S.J. Andersen, H.W. Zandbergen, R. Holmestad, Metall. Mater. Trans. A 36 (2005) 691-702. |
| [40] |
S.J. Andersen, Metall. Mater. Trans. A 26 (1995) 1931-1937.
DOI URL |
| [41] |
P.H. Ninive, A. Strandlie, S. Gulbrandsen-Dahl, W. Lefebvre, C.D. Marioara, S.J. Andersen, J. Friis, R. Holmestad, O.M. Lovvik, Acta Mater. 69 (2014) 126-134.
DOI URL |
| [42] |
S. Esmaeili, D.J. Lloyd, W.J. Poole, Mater. Lett. 59 (2005) 575-577.
DOI URL |
| [43] |
T.E.M. Staab, R. Krause-Rehberg, U. Hornauer, E. Zschech, J. Mater. Sci. 41 (2006) 1059-1066.
DOI URL |
| [44] | M. Madanat, M. Liu, X. Zhang, Q. Guo, J. Cizek, J. Banhart, Phys. Rev. Mater. 4 (2020) 063608. |
| [45] |
L. Resch, G. Klinser, E. Hengge, R. Enzinger, M. Luckabauer, W. Sprengel, R. Würschum, J. Mater. Sci. 53 (2018) 14657-14665.
DOI URL |
| [46] | S.N. Kim, E. Kobayashi, T. Sato, Mater. Sci. Forum 794-796 (2014) 957-962. |
| [47] |
V.A. Esin, L. Briez, M. Sennour, A. Köster, E. Gratiot, J. Crepin, J. Alloy. Compd. 854 (2021) 157164.
DOI URL |
| [48] |
M. Song, B. Liao, Thermochim. Acta 423 (2004) 57-61.
DOI URL |
| [49] |
B. Schäffer, B. Schäffer, D. Lörinczy, J. Therm. Anal. Calorim. 82 (2005) 531-535.
DOI URL |
| [50] |
M. Elsabee, R.J. Prankerd, Int. J. Pharm. 86 (1989) 211-219.
DOI URL |
| [51] |
M. Mantina, Y. Wang, L.Q. Chen, Z.K. Liu, C. Wolverton, Acta Mater. 57 (2009) 4102-4108.
DOI URL |
| [52] |
M.J. Starink, L.F. Cao, P.A. Rometsch, Acta Mater. 60 (2012) 4194-4207.
DOI URL |
| [53] |
S. Pogatscher, H. Antrekowitsch, P.J. Uggowitzer, Mater. Lett. 100 (2013) 163-165.
DOI URL |
| [54] |
C.H. Liu, Y.X. Lai, J.H. Chen, G.H. Tao, L.M. Liu, P.P. Ma, C.L. Wu, Scr. Mater. 115 (2016) 150-154.
DOI URL |
| [1] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
| [2] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
| [3] | Lei Cheng, Baihai Li, Hui Yin, Jiajie Fan, Quanjun Xiang. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction [J]. J. Mater. Sci. Technol., 2022, 118(0): 54-63. |
| [4] | Hui Wen, Ziyu Yi, Zhenyu Hu, Rui Guo, Xuanwen Liu. Design strategy for low-temperature sulfur etching to achieve high-performance hollow multifunctional electrode material [J]. J. Mater. Sci. Technol., 2022, 119(0): 209-218. |
| [5] | Weichao Bao, Xin-Gang Wang, Ying Lu, Ji-Xuan Liu, Shikuan Sun, Guo-Jun Zhang, Fangfang Xu. Effect of native carbon vacancies on evolution of defects in ZrC1-x under He ion irradiation and annealing [J]. J. Mater. Sci. Technol., 2022, 119(0): 87-97. |
| [6] | Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing [J]. J. Mater. Sci. Technol., 2022, 115(0): 166-176. |
| [7] | Hongmei Jin, Renguo Guan, Xianxiang Huang, Ying Fu, Jin Zhang, Xiaolin Chen, Yu Wang, Fei Gao, Di Tie. Understanding the precipitation mechanism of copper-bearing phases in Al-Mg-Si system during thermo-mechanical treatment [J]. J. Mater. Sci. Technol., 2022, 96(0): 226-232. |
| [8] | Xinyu Zhang, Chuanwei Li, Mengyao Zheng, Xudong Yang, Zhenhua Ye, Jianfeng Gu. Chemical, microstructure, and mechanical property of TiAl alloys produced by high-power direct laser deposition [J]. J. Mater. Sci. Technol., 2022, 117(0): 99-108. |
| [9] | Jian Chen, Zhen Hu, Yang Ou, Qinghua Zhang, Xiaopeng Qi, Lin Gu, Tongxiang Liang. Interfacial engineering regulated by CeOx to boost efficiently alkaline overall water splitting and acidic hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2022, 120(0): 129-138. |
| [10] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
| [11] | Lin Song, Fritz Appel, Andreas Stark, Uwe Lorenz, Junyang He, Zhanbing He, Junpin Lin, Tiebang Zhang, Florian Pyczak. On the reversibility of the α2/ωo phase transformation in a high Nb containing TiAl alloy during high temperature deformation [J]. J. Mater. Sci. Technol., 2021, 93(0): 96-102. |
| [12] | N.N. Jiao, Y.X. Lai, S.L. Chen, P. Gao, J.H. Chen. Atomic-scale roles of Zn element in age-hardened AlMgSiZn alloys [J]. J. Mater. Sci. Technol., 2021, 70(0): 105-112. |
| [13] | Ruiqing Lu, Shuwei Zheng, Jie Teng, Jiamin Hu, Dingfa Fu, Jianchun Chen, Guodong Zhao, Fulin Jiang, Hui Zhang. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach [J]. J. Mater. Sci. Technol., 2021, 80(0): 150-162. |
| [14] | Yuliang Zhao, Weiwen Zhang, Dongfu Song, Bo Lin, Fanghua Shen, Donghai Zheng, ChunXiao Xie, Zhenzhong Sun, Yanan Fu, Runxia Li. Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy [J]. J. Mater. Sci. Technol., 2021, 80(0): 84-99. |
| [15] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
