J. Mater. Sci. Technol. ›› 2022, Vol. 119: 87-97.DOI: 10.1016/j.jmst.2022.01.004
• Research Article • Previous Articles Next Articles
Weichao Baoa, Xin-Gang Wanga,*(
), Ying Lua, Ji-Xuan Liub, Shikuan Sunc, Guo-Jun Zhangb,*(
), Fangfang Xua,*(
)
Received:2021-04-30
Revised:2021-12-10
Accepted:2022-01-22
Published:2022-03-04
Online:2022-03-04
Contact:
Xin-Gang Wang,Guo-Jun Zhang,Fangfang Xu
About author:ffxu@mail.sic.ac.cn (F. Xu).Weichao Bao, Xin-Gang Wang, Ying Lu, Ji-Xuan Liu, Shikuan Sun, Guo-Jun Zhang, Fangfang Xu. Effect of native carbon vacancies on evolution of defects in ZrC1-x under He ion irradiation and annealing[J]. J. Mater. Sci. Technol., 2022, 119: 87-97.
Fig. 1. The damage in dpa and He ions range for the implantation fluence of 1 × 1017/cm2 at 540 keV in ZrC1-x (x=0, 0.15, 0.3) which were calculated by SRIM with the mode of ‘Kinchin-Pease’.
Fig. 3. (a) GIXRD patterns of as-hot pressed, as-irradiated and as-annealed ZrC1-x (x=0, 0.15, 0.3) with a glancing angle of 2°; (b) Changing of crystal lattices of ZrC1-x (x=0, 0.15, 0.3) via irradiation and post-annealing with respect to lattice parameter a (left) and ∆a/a (right).
Fig. 4. Cross-sectional TEM images of as-irradiated ZrC1.0, ZrC0.85 and ZrC0.7 samples. (a-c) BF images; (d-f) SAD patterns of the damaged area marked by a yellow circle in (a-c); (g-i) BF images of the damaged area near the irradiated/non-irradiated interface.
Fig. 5. Cross-sectional TEM images of 800 °C-annealed ZrC1.0, ZrC0.85 and ZrC0.7. (a-c) BF images; (d-f) and (g-i) BF under-focused and over-focused images, respectively, of the damaged area close to the interface as marked by dashed blue squares in (a-c). (de-focus ± ~300 nm).
Fig. 6. Cross-sectional TEM images of 800 °C-annealed ZrC0.7. (a, b) BF under-focused and over-focused images, respectively, of the damaged area close to the interface. (de-focus ± ~1 µm).
Fig. 7. Cross-sectional TEM images of 1500 °C-annealed ZrC1.0, ZrC0.85 and ZrC0.7. (a, e, i) HAADF images at low magnification; (b, f, j) SAD patterns of the area outlined by green dashed circles in (a, e, i); (e, g, h) and (I, k, l) magnified HAADF and ADF images, respectively, showing cavities and extended dislocations near the interface between irradiated and non-irradiated area.
| Samples | Layered No. | Depth range | Features of dislocations |
|---|---|---|---|
| ZrC1.0 | 1 | 0-630 nm | High density of small dislocation loops with a diameter of <20 nm; sporadic dislocations with a length of 50-150 nm (marked by the yellow dashed circle in |
| 2 | 630-1080 nm | Sparse long dislocations with a length of 150-400 nm; few dislocations with a diameter of <20 nm. | |
| 3 | 1080-1330 nm | Severely damaged areas where individual defects can hardly be discernible. | |
| ZrC0.85 | 1 | 0-750 nm | Sporadic dislocations with a length of 50-100 nm (marked by the yellow dashed circle in |
| 2 | 750-1100 nm | Sparse long dislocations with a length of 50-150 nm. | |
| 3 | 1100-1280 nm | Dense short dislocations with a length of <50 nm along with dislocation loops of increased diameters (<20 nm). | |
| ZrC0.7 | 1 | 0-750 nm | No dislocations or loops at all. |
| 2 | 750-1400 nm | Dense small dislocation loops with a diameter of <20 nm; sporadic dislocations with a length of 50-150 nm (marked by the yellow dash circle in |
Table 1. Features of dislocations in 1500 °C-annealed ZrC1.0, ZrC0.85, and ZrC0.7.
| Samples | Layered No. | Depth range | Features of dislocations |
|---|---|---|---|
| ZrC1.0 | 1 | 0-630 nm | High density of small dislocation loops with a diameter of <20 nm; sporadic dislocations with a length of 50-150 nm (marked by the yellow dashed circle in |
| 2 | 630-1080 nm | Sparse long dislocations with a length of 150-400 nm; few dislocations with a diameter of <20 nm. | |
| 3 | 1080-1330 nm | Severely damaged areas where individual defects can hardly be discernible. | |
| ZrC0.85 | 1 | 0-750 nm | Sporadic dislocations with a length of 50-100 nm (marked by the yellow dashed circle in |
| 2 | 750-1100 nm | Sparse long dislocations with a length of 50-150 nm. | |
| 3 | 1100-1280 nm | Dense short dislocations with a length of <50 nm along with dislocation loops of increased diameters (<20 nm). | |
| ZrC0.7 | 1 | 0-750 nm | No dislocations or loops at all. |
| 2 | 750-1400 nm | Dense small dislocation loops with a diameter of <20 nm; sporadic dislocations with a length of 50-150 nm (marked by the yellow dash circle in |
Fig. 9. Cross-sectional TEM images of as-annealed ZrC1.0, ZrC0.85 and ZrC0.7. (a-c) and (d-f) BF under-focused images of 800 °C- and 1500 °C-annealed samples around the interface, respectively. (de-focus ± ~1 µm)
Fig. 10. Schematic drawing of different types of defects. (The He-Vacancy and vacancy clusters involve more atoms or vacancies, not only the numbers in the graphic.)
| Empty Cell | C vacancy | C interstitial | Zr vacancy | Zr interstitial | ||
|---|---|---|---|---|---|---|
| Formation energya | 0.93 eV | 3.56 eV | 7.19 eV | 10.36 eV | ||
| Migration barriersb | 4.41 eV | 0.27 eV | 5.44 eV | 4.41 eV | ||
| Empty Cell | He@C vacancy | He@Zr vacancy | He interstitial | |||
| Formation energyc | 0.80 eV | 0.70 eV | 4.22 eV | |||
| Migration barriersc | 2.85 eV | 4.20 eV | 0.7-0.8 eV | |||
| Empty Cell | C Frenkel pairs | Zr Frenkel pairs | Schottky defect | |||
| Formation energyc | 4.54 eV | 17.69 eV | 8.14 eV | |||
Table 2. Defect formation energies and migration barriers.
| Empty Cell | C vacancy | C interstitial | Zr vacancy | Zr interstitial | ||
|---|---|---|---|---|---|---|
| Formation energya | 0.93 eV | 3.56 eV | 7.19 eV | 10.36 eV | ||
| Migration barriersb | 4.41 eV | 0.27 eV | 5.44 eV | 4.41 eV | ||
| Empty Cell | He@C vacancy | He@Zr vacancy | He interstitial | |||
| Formation energyc | 0.80 eV | 0.70 eV | 4.22 eV | |||
| Migration barriersc | 2.85 eV | 4.20 eV | 0.7-0.8 eV | |||
| Empty Cell | C Frenkel pairs | Zr Frenkel pairs | Schottky defect | |||
| Formation energyc | 4.54 eV | 17.69 eV | 8.14 eV | |||
Fig. 11. Cross-sectional TEM images of 1500 °C-annealed ZrC0.85 and ZrC0.7. (a, b) BF under-focused and over-focused images, respectively, of the unirradiated area in ZrC0.85; (c, d) BF under-focused and over-focused images, respectively, of the unirradiated area in ZrC0.7. (de-focus ± 300 nm)
Fig. 12. (a-c) BF under-focused images of 1500 °C-annealed ZrC1.0 at different areas; (d, e) BF under-focused images of 1500 ˚C-annealed ZrC0.85 and ZrC0.7, respectively. (deviation parameter s » 0, de-focus ± ~1 µm)
Fig. 13. Mechanism of annealing induced generation of extended dislocations with decoration of helium bubbles. (a) “black-dot” defects and He atoms inside the as-irradiated sample; (b) Growth of dislocations with He atoms moving around; (c) Growth of helium bubbles with removal of matrix atoms; (d) Movement of displaced matrix atoms driven by local stress; (e) Extended dislocations with decoration of helium bubbles.
| [1] | G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, Berlin, 2007. |
| [2] |
M.J. Zheng, I. Szlufarska, D. Morgan, J. Nucl. Mater. 471 (2016) 214-219.
DOI URL |
| [3] |
J.X. Xue, G.J. Zhang, L.P. Guo, H.B. Zhang, X.G. Wang, J. Zou, S.M. Peng, X.G. Long, J. Eur. Ceram. Soc. 34 (2014) 633-639.
DOI URL |
| [4] |
H.W. Hugosson, U. Jansson, B. Johansson, O. Eriksson, Chem. Phys. Lett. 333 (2001) 444-450.
DOI URL |
| [5] |
X.G. Wang, W.M. Guo, Y.M. Kan, G.J. Zhang, P.L. Wang, J. Eur. Ceram. Soc. 31 (2011) 1103-1111.
DOI URL |
| [6] |
Y. Katoh, G. Vasudevamurthy, T. Nozawa, L.L. Snead, J. Nucl. Mater. 441 (2013) 718-742.
DOI URL |
| [7] |
Z.J. Yu, X. Lv, S.Y. Lai, L. Yang, W.J. Lei, X.G. Luan, R. Riedel, J. Adv. Ceram. 8 (2019) 112-120.
DOI URL |
| [8] |
G.H. Reynolds, J. Nucl. Mater. 62 (1976) 9-16.
DOI URL |
| [9] |
K. Minato, T. Ogawa, K. Fukuda, H. Sekino, I. Kitagawa, N. Mita, J. Nucl. Mater. 249 (1995) 142-149.
DOI URL |
| [10] |
R.V. Sara, J. Am. Ceram. Soc. 48 (2010) 243-247.
DOI URL |
| [11] |
L.L. Snead, Y. Katoh, S. Kondo, J. Nucl. Mater. 399 (2010) 200-207.
DOI URL |
| [12] |
R.E. Bullock, J. Nucl. Mater. 125 (1984) 304-319.
DOI URL |
| [13] |
X. Wang, C. Xu, S. Hu, H. Zhang, X. Zhou, S. Peng, J. Nucl. Mater. 521 (2019) 146-154.
DOI URL |
| [14] |
M. Jiang, H.Y. Xiao, H.B. Zhang, S.M. Peng, C.H. Xu, Z.J. Liu, X.T. Zu, Acta Mater 110 (2016) 192-199.
DOI URL |
| [15] |
S. Pellegrino, L. Thomé, A. Debelle, S. Miro, P. Trocellier, Nucl. Instrum. Methods Phys. Res. 327 (2014) 103-107.
DOI URL |
| [16] |
S. Pellegrino, L. Thomé, A. Debelle, S. Miro, P. Trocellier, Nucl. Instrum. Methods Phys. Res. 307 (2013) 294-298.
DOI URL |
| [17] |
W.C. Bao, J.X. Liu, X.G. Wang, H.B. Zhang, J.X. Xue, S.K. Sun, F.F. Xu, J.M. Xue, G.J. Zhang, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 434 (2018) 23-28.
DOI URL |
| [18] |
S. Pellegrino, J.P. Crocombette, A. Debelle, T. Jourdan, P. Trocellier, L. Thome, Acta Mater 102 (2016) 79-87.
DOI URL |
| [19] | D. Gosset, M. Dolle, D. Simeone, G. Baldinozzi, L. Thome, Nucl. Instrum. Meth- ods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 266 (2008) 2801-2805. |
| [20] |
J. Gan, M.K. Meyer, R.C. Birtcher, T.R. Allen, J. Astm Int. 3 (2006) 12376.
DOI URL |
| [21] | C. Ulmer, Ph.D. Thesis, The Pennsylvania State University, 2014. |
| [22] |
C.J. Ulmer, A.T. Motta, M.A. Kirk, J. Nucl. Mater. 466 (2015) 606-614.
DOI URL |
| [23] | A. Motta, K. Sridharan, D. Morgan, I. Szlufarska, Understanding the Irradia- tion Behavior of Zirconium Carbide, Office of Scientific & Technical Information Technical Reports, No. 10-679, 2013. |
| [24] |
J. Gan, Y. Yang, C. Dickson, T. Allen, J. Nucl. Mater. 389 (2009) 317-325.
DOI URL |
| [25] |
Y. Yang, Clayton A. Dickerson, H. Swoboda, B. Miller, Todd R. Allen, J. Nucl. Mater. 378 (2008) 341-348.
DOI URL |
| [26] |
S. Agarwal, A. Bhattacharya, P. Trocellier, S.J. Zinkle, Acta Mater 163 (2019) 14-27.
DOI URL |
| [27] |
Y. Huang, B.R. Maier, T.R. Allen, Nucl. Eng. Des. 277 (2014) 55-63.
DOI URL |
| [28] |
Y. Yang, W.Y. Lo, C. Dickerson, T.R. Allen, J. Nucl. Mater. 454 (2014) 130-135.
DOI URL |
| [29] |
B.X. Wei, Y.J. Wang, H.B. Zhang, D. Wang, S.M. Peng, Y. Zhou, Mater. Lett. 228 (2018) 254-257.
DOI URL |
| [30] |
B.X. Wei, D. Wang, Y.J. Wang, H.B. Zhang, Materials 12 (2019) 3768.
DOI URL |
| [31] |
X.G. Wang, G.J. Zhang, J.X. Xue, Y. Tang, X. Huang, C.M. Xu, P.L. Wang, J. Am. Ceram. Soc. 96 (2013) 32-36.
DOI URL |
| [32] |
X.G. Wang, J.X. Liu, Y.M. Kan, G.J. Zhang, J. Eur. Ceram. Soc. 32 (2012) 1795-1802.
DOI URL |
| [33] |
W. Bao, S. Robertson, J.X. Liu, G.J. Zhang, F.F. Xu, H.Z. Wu, J. Eur. Ceram. Soc. 38 (2018) 4373-4383.
DOI URL |
| [34] | J. Ziegler, J.P. Biersack, M.D. Ziegler, The Stopping and Range of Ions in Matter, fifth ed., Springer, Berlin, 2008. |
| [35] |
W. Bao, S. Robertson, J.W. Zhao, J.X. Liu, H. Wu, G.J. Zhang, F. Xu, J. Mater. Sci. Technol. 72 (2021) 223-230.
DOI URL |
| [36] |
V. Krsjak, J. Degmova, S. Sojak, V. Slugen, J. Nucl. Mater. 499 (2018) 38-46.
DOI URL |
| [37] | S. Agarwal, P. Trocellier, Y. Serruys, S. Vaubaillon, S. Miro, Nucl. Instrum. Meth- ods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 327 (2014) 117-120. |
| [38] |
G. Busker, M.A. van Huis, R.W. Grimes, A. van Veen, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 171 (2000) 528-536.
DOI URL |
| [39] |
W. Beeré, G.L. Reynolds, Acta Metall 20 (1972) 845-848.
DOI URL |
| [40] |
H. Trinkaus, B.N. Singh, J. Nucl. Mater. 323 (2003) 229-242.
DOI URL |
| [41] |
R.D.S. Yadava, J. Nucl. Mater. 98 (1981) 47-62.
DOI URL |
| [42] |
Y. Zhang, B. Liu, J. Wang, J. Wang, Acta Mater 111 (2016) 232-241.
DOI URL |
| [43] |
S. Kim, I. Szlufarska, D. Morgan, J. Appl. Phys. 107 (2010) 053521.
DOI URL |
| [44] |
M.J. Zheng, I. Szlufarska, D. Morgan, J. Nucl. Mater. 457 (2015) 343-351.
DOI URL |
| [45] |
X. Yang, Y. Lu, P. Zhang, J. Nucl. Mater. 465 (2015) 161-166.
DOI URL |
| [46] |
Y. Zhang, B. Liu, J. Wang, Sci. Rep. 5 (2016) 18098.
DOI URL |
| [47] |
T. Yang, C.A. Taylor, S. Kong, C. Wang, Y. Zhang, X. Huang, J. Xue, S. Yan, Y. Wang, J. Nucl. Mater. 443 (2013) 40-48.
DOI URL |
| [48] |
J. Chen, P. Jung, H. Trinkaus, Phys. Rev. Lett. 82 (1999) 2709-2712.
DOI URL |
| [49] |
J. Chen, P. Jung, H. Trinkaus, Phys. Rev. B 61 (20 0 0) 12923-12932.
DOI URL |
| [50] |
N. Takada, M. Misawa, A. Tomiyama, S. Hosokawa, J. Nucl. Sci. Technol. 38 (2001) 330-341.
DOI URL |
| [51] | X.Y. Yang, Y. Lu, P. Zhang, J. Appl. Phys. 117 (2015) 5. |
| [1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
| [2] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
| [3] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
| [4] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
| [5] | Ruifeng Dong, Hongchao Kou, Yuhong Zhao, Xiaoyang Zhang, Ling Yang, Hua Hou. Morphology characteristics of α precipitates related to the crystal defects and the strain accommodation of variant selection in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 95(0): 1-9. |
| [6] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
| [7] | Yue Zhou, William G. Fahrenholtz, Joseph Graham, Gregory E. Hilmas. From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrCx [J]. J. Mater. Sci. Technol., 2021, 82(0): 105-113. |
| [8] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
| [9] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
| [10] | Si-Mian Liu, Shi-Hao Li, Wei-Zhong Han. Effect of ordered helium bubbles on deformation and fracture behavior of α-Zr [J]. J. Mater. Sci. Technol., 2019, 35(7): 1466-1472. |
| [11] | Guang Yang, Shang-Yi Ma, Kui Du, Dong-Sheng Xu, Sen Chen, Yang Qi, Heng-Qiang Ye. Interactions between dislocations and twins in deformed titanium aluminide crystals [J]. J. Mater. Sci. Technol., 2019, 35(3): 402-408. |
| [12] | J.?í?ek. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review [J]. J. Mater. Sci. Technol., 2018, 34(4): 577-598. |
| [13] | Blum W., Eisenlohr P.. Deformation Strength of Nanocrystalline Thin Films [J]. J. Mater. Sci. Technol., 2017, 33(7): 718-722. |
| [14] | He Binbin, Xu Wei, Huang Mingxin. Effect of boron on bainitic transformation kinetics after ausforming in low carbon steels [J]. J. Mater. Sci. Technol., 2017, 33(12): 1494-1503. |
| [15] | S. Tang, L.K. Ning, T.Z. Xin, Z. Zheng. Coarsening Behavior of Gamma Prime Precipitates in a Nickel Based Single Crystal Superalloy [J]. J. Mater. Sci. Technol., 2016, 32(2): 172-176. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
