J. Mater. Sci. Technol. ›› 2022, Vol. 117: 238-250.DOI: 10.1016/j.jmst.2021.10.052
• Review Article • Previous Articles Next Articles
Xue Tana,b, Qilong Yuana,b,*(), Mengting Qiua,b, Jinhong Yua,b, Nan Jianga,b, Cheng-Te Lina,b,*(
), Wen Daia,b,*(
)
Received:
2021-08-03
Revised:
2021-10-01
Accepted:
2021-10-03
Published:
2022-02-21
Online:
2022-08-01
Contact:
Qilong Yuan,Cheng-Te Lin,Wen Dai
About author:
daiwen@nimte.ac.cn (W. Dai).Xue Tan, Qilong Yuan, Mengting Qiu, Jinhong Yu, Nan Jiang, Cheng-Te Lin, Wen Dai. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review[J]. J. Mater. Sci. Technol., 2022, 117: 238-250.
Fig. 1. Application scenarios of EMI shielding materials and TIMs in the 5G communications: (a) EMI shielding materials used in the SiP platform of the RF module. Reproduced with permission [6]. Copyright 2019, IEEE. and (b) TIMs used in the ball grid array (BGA) electronics package of 5G chip. Reproduced with permission [12]. Copyright 2018, Taylor & Francis.
Fig. 3. (a) “Sea-island” in low fillers loading. (b) Thermal conduction paths in high fillers loading. (c) Percolation phenomenon. (d) Thermoelastic coefficient theory. Reproduced with permission [79]. Copyright 2020, Elsevier.
Materials | Filler loading | Thickness (mm) | Density (g cm-3) | Frequency (GHz) | EMI SE (dB) | SER (dB) | SEA (dB) | SSE (dB cm3 g-1) | SE/t (dB cm-1) | SSE/t (dB cm2 g-1) | TC (W m-1 K-1) | TCE (%) | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Random Dispersion | Empty Cell | ||||||||||||
GNP/PEDOT:PSS | 10 wt% | 0.8 | 1.031 | 8.2 - 12.4 | 46 | 2 | 44 | 46 | 575 | 570 | 0.6 | 216 | [ |
GNP/EPDM | 8 wt% | 0.3 | / | 8.2 - 12.4 | 32.4 | 8.5 | 23.9 | / | 1080 | / | 0.79 | 243 | [ |
Graphene/epoxy | 19.5 vol% | 1 | / | 8 - 12.4 | 65 | 10 | 55 | / | 650 | / | 11.2 | 3973 | [ |
GNP/PLA | 15 wt% | 1 | / | 10 | 40 | 0.4 | 39.6 | / | 400 | / | 1.72 | 406 | [ |
EG/LLDPE | 31.6 vol% | 1.5 | / | 8.2 | 33.1 | 2.4 | 30.7 | / | 221 | / | 6.5 | 1525 | [ |
Interconnected Structure | |||||||||||||
Graphite foam/PDMS | 15.9 wt% | 4.5 | 0.17 | 8.2 - 18 | 31 | 8 | 23 | 183 | 69 | 407 | 0.076 | 102 | [ |
Carbon Aerogel@rGO/PDMS | 3.05 wt% | 3 | / | 8.2 - 12.4 | 51 | 7 | 44 | / | 170 | / | 0.65 | 225 | [ |
GNP/rGO/epoxy | 20.5 wt% | 3 | / | 8.2 - 12.4 | 51 | 8 | 43 | / | 170 | / | 1.56 | 609 | [ |
rGO/GNP/PDMS | 18.1 wt% | 4 | 1.1 | 8.2 - 12.4 | 94 | 7.5 | 86.5 | 86 | 235 | 214 | 3 | 1513 | [ |
EG/LLDPE | 24.89 vol% | 2 | 1.27 | 8 - 12 | 52.4 | 11.7 | 40.7 | 41 | 262 | 206 | 19.6 | 5927 | [ |
Graphene/PW | 23 wt% | / | / | 8.2 - 12.4 | 48.2 | 15.5 | 32.7 | / | / | / | 28.7 | 14250 | [ |
Anisotropic Orientation | |||||||||||||
Graphene film | 100 wt% | 0.014 | 2.05 | 8.2 - 12.4 | 73.7 | / | / | 36 | 52643 | 25680 | 803.1 (//) | / | [ |
rGO film | 100 wt% | 0.015 | / | 1 | 20.2 | 5.55 | 14.65 | / | 13467 | / | 1390 (//) | / | [ |
GNP/nylon | 11.8 wt% | 0.18 | / | 8.2 - 12.4 | 58.1 | 6.6 | 51.5 | / | 3228 | / | 15.8 (//) | 6220 | [ |
GNP/POM | 48 wt% | 0.15 | / | 10 | 44.7 | 9.6 | 31.4 | / | 2733 | / | 4.24 (⊥) | 1111 | [ |
Graphene Hybrids Composites - 0D Hybrid | |||||||||||||
Graphene/Ni/PC/SAN | 3 wt% | / | / | 18 | 29.4 | / | / | / | / | / | 0.7 | 276 | [ |
Graphene/Cu/CPU | 0.87 vol% | 2 | / | 0 - 9 | 28.9-55.6 | / | / | / | 145-565 | / | 0.103 | 348 | [ |
rGO@Fe3O4/epoxy | 8.97 | 2 | / | 8.2 | 13.45 | 8.84 | 4.61 | / | 67 | / | 1.213 (//) | 507 | [ |
Fe3O4/GF/PDMS | 12 wt% | 2 | / | 8.2 - 12.4 | 70.37 | 11.67 | 58.7 | / | 352 | / | 28.12 (//) | 1302 | [ |
Graphene Hybrids Composites - 1D Hybrid | |||||||||||||
Graphene/cellulose nanofiber | 25 wt% | 0.033 | 1.36 | 8.2 - 12.4 | 27.4 | 12.3 | 15.1 | 20.15 | 8303 | 6106 | 33.55 (//) | / | [ |
rGO/cellulose nanofiber | 50 wt% | 0.023 | / | 8.2 - 12.4 | 26.2 | 8.5 | 17.7 | / | 11391 | / | 7.3 (//) | 469 | [ |
GNP/cellulose | 90 wt% | 0.013 | / | 8.2 - 12.4 | 43 | 18.6 | 24.4 | / | 33077 | / | 240.5 (//) | 149 | [ |
EG/cellulose nanofiber/PEO | 97 wt% | 0.012 | / | 8.2 - 12.4 | 44 | 20 | 24 | / | 36667 | / | 302.3 (//) | / | [ |
Graphene/SiCnw/ PVDF | 9.5 wt% | 1.2 | / | 9.2 | 32.1 | 7.5 | 24..5 | / | 268 | / | 2.13 | 914 | [ |
Graphene/Ni/PVDF | 20 wt% | 0.5 | / | 18 - 26.5 | 43.3 | 11.5 | 31.7 | / | 866 | / | 8.96 (//) | 1199 | [ |
Graphene Hybrids Composites - 2D Hybrid | |||||||||||||
Cu/graphene | 100 wt% | 0.0088 | / | 1 - 18 | 52 | / | / | / | 59091 | / | 1932.73 (//) | / | [ |
GO/BN/SEBS-g-MAH/PHDDT | 35 wt% | 0.235 | / | 8.2 - 12.4 | 37.92 | 5.91 | 32.01 | / | 1614 | / | 12.62 (//) | / | [ |
MXene/rGO/PMMA | 2 vol% | 2 | / | 8 - 12 | 51 | 9.5 | 41.5 | / | 255 | / | 2.83 | 1472 | [ |
Table 1. Comparison of EMI shielding performance and thermal conductivity of the polymer matrix composites with different structures.
Materials | Filler loading | Thickness (mm) | Density (g cm-3) | Frequency (GHz) | EMI SE (dB) | SER (dB) | SEA (dB) | SSE (dB cm3 g-1) | SE/t (dB cm-1) | SSE/t (dB cm2 g-1) | TC (W m-1 K-1) | TCE (%) | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Random Dispersion | Empty Cell | ||||||||||||
GNP/PEDOT:PSS | 10 wt% | 0.8 | 1.031 | 8.2 - 12.4 | 46 | 2 | 44 | 46 | 575 | 570 | 0.6 | 216 | [ |
GNP/EPDM | 8 wt% | 0.3 | / | 8.2 - 12.4 | 32.4 | 8.5 | 23.9 | / | 1080 | / | 0.79 | 243 | [ |
Graphene/epoxy | 19.5 vol% | 1 | / | 8 - 12.4 | 65 | 10 | 55 | / | 650 | / | 11.2 | 3973 | [ |
GNP/PLA | 15 wt% | 1 | / | 10 | 40 | 0.4 | 39.6 | / | 400 | / | 1.72 | 406 | [ |
EG/LLDPE | 31.6 vol% | 1.5 | / | 8.2 | 33.1 | 2.4 | 30.7 | / | 221 | / | 6.5 | 1525 | [ |
Interconnected Structure | |||||||||||||
Graphite foam/PDMS | 15.9 wt% | 4.5 | 0.17 | 8.2 - 18 | 31 | 8 | 23 | 183 | 69 | 407 | 0.076 | 102 | [ |
Carbon Aerogel@rGO/PDMS | 3.05 wt% | 3 | / | 8.2 - 12.4 | 51 | 7 | 44 | / | 170 | / | 0.65 | 225 | [ |
GNP/rGO/epoxy | 20.5 wt% | 3 | / | 8.2 - 12.4 | 51 | 8 | 43 | / | 170 | / | 1.56 | 609 | [ |
rGO/GNP/PDMS | 18.1 wt% | 4 | 1.1 | 8.2 - 12.4 | 94 | 7.5 | 86.5 | 86 | 235 | 214 | 3 | 1513 | [ |
EG/LLDPE | 24.89 vol% | 2 | 1.27 | 8 - 12 | 52.4 | 11.7 | 40.7 | 41 | 262 | 206 | 19.6 | 5927 | [ |
Graphene/PW | 23 wt% | / | / | 8.2 - 12.4 | 48.2 | 15.5 | 32.7 | / | / | / | 28.7 | 14250 | [ |
Anisotropic Orientation | |||||||||||||
Graphene film | 100 wt% | 0.014 | 2.05 | 8.2 - 12.4 | 73.7 | / | / | 36 | 52643 | 25680 | 803.1 (//) | / | [ |
rGO film | 100 wt% | 0.015 | / | 1 | 20.2 | 5.55 | 14.65 | / | 13467 | / | 1390 (//) | / | [ |
GNP/nylon | 11.8 wt% | 0.18 | / | 8.2 - 12.4 | 58.1 | 6.6 | 51.5 | / | 3228 | / | 15.8 (//) | 6220 | [ |
GNP/POM | 48 wt% | 0.15 | / | 10 | 44.7 | 9.6 | 31.4 | / | 2733 | / | 4.24 (⊥) | 1111 | [ |
Graphene Hybrids Composites - 0D Hybrid | |||||||||||||
Graphene/Ni/PC/SAN | 3 wt% | / | / | 18 | 29.4 | / | / | / | / | / | 0.7 | 276 | [ |
Graphene/Cu/CPU | 0.87 vol% | 2 | / | 0 - 9 | 28.9-55.6 | / | / | / | 145-565 | / | 0.103 | 348 | [ |
rGO@Fe3O4/epoxy | 8.97 | 2 | / | 8.2 | 13.45 | 8.84 | 4.61 | / | 67 | / | 1.213 (//) | 507 | [ |
Fe3O4/GF/PDMS | 12 wt% | 2 | / | 8.2 - 12.4 | 70.37 | 11.67 | 58.7 | / | 352 | / | 28.12 (//) | 1302 | [ |
Graphene Hybrids Composites - 1D Hybrid | |||||||||||||
Graphene/cellulose nanofiber | 25 wt% | 0.033 | 1.36 | 8.2 - 12.4 | 27.4 | 12.3 | 15.1 | 20.15 | 8303 | 6106 | 33.55 (//) | / | [ |
rGO/cellulose nanofiber | 50 wt% | 0.023 | / | 8.2 - 12.4 | 26.2 | 8.5 | 17.7 | / | 11391 | / | 7.3 (//) | 469 | [ |
GNP/cellulose | 90 wt% | 0.013 | / | 8.2 - 12.4 | 43 | 18.6 | 24.4 | / | 33077 | / | 240.5 (//) | 149 | [ |
EG/cellulose nanofiber/PEO | 97 wt% | 0.012 | / | 8.2 - 12.4 | 44 | 20 | 24 | / | 36667 | / | 302.3 (//) | / | [ |
Graphene/SiCnw/ PVDF | 9.5 wt% | 1.2 | / | 9.2 | 32.1 | 7.5 | 24..5 | / | 268 | / | 2.13 | 914 | [ |
Graphene/Ni/PVDF | 20 wt% | 0.5 | / | 18 - 26.5 | 43.3 | 11.5 | 31.7 | / | 866 | / | 8.96 (//) | 1199 | [ |
Graphene Hybrids Composites - 2D Hybrid | |||||||||||||
Cu/graphene | 100 wt% | 0.0088 | / | 1 - 18 | 52 | / | / | / | 59091 | / | 1932.73 (//) | / | [ |
GO/BN/SEBS-g-MAH/PHDDT | 35 wt% | 0.235 | / | 8.2 - 12.4 | 37.92 | 5.91 | 32.01 | / | 1614 | / | 12.62 (//) | / | [ |
MXene/rGO/PMMA | 2 vol% | 2 | / | 8 - 12 | 51 | 9.5 | 41.5 | / | 255 | / | 2.83 | 1472 | [ |
Fig. 4. Schematic illustration of the fabrication process of GNPs/EPDM nanocomposites through mixing and compression molding process. Reproduced with permission [86]. Copyright 2019, World Scientific.
Fig. 5. (a) Bulk in-plane electrical conductivity of the graphene/epoxy composites versus FLG filler loading, the insert indicates the fabrication process of the graphene/epoxy composites. (b) Average reflection (red circles), absorption (blue triangles), and total EMI shielding (green squares) of composites over the entire X-band frequency range as a function of graphene loading. (c) Thermal conductivity of the composites as a function of graphene loading fraction at room temperature. (d) Total EMI SE of the epoxy with 17.1 vol% of graphene fillers as a function of temperature in the X-band frequency range. (e) The color map of the total EMI SE of the composites with 17.1 vol% of graphene fillers as a function of frequency in the temperature range from 303 K to 523 K. (f) Thermal conductivity of three composites with different graphene loading as a function of temperature. Reproduced with permission [87]. Copyright 2020, Wiley.
Fig. 6. (a) Schematic illustration of the fabrication procedure for CCA@rGO/PDMS EMI shielding composites. (b) SEM of CCA. (c) EMI SEA and SER of the CCA@rGO/PDMS EMI shielding composites. (d) Schematic illustration of EMI shielding mechanism. Reproduced with permission [91]. Copyright 2021, Springer Nature.
Fig. 7. Schematic illustration of the overall fabrication procedure of 3D T-rGO-GNP-PDMS composites. Reproduced with permission [92]. Copyright 2021, Elsevier.
Fig. 8. (a) Schematic illustration of preparation process of graphene films. (b) The multi-layer model for graphene films composed of graphene laminates and (c) schematic illustration of electromagnetic waves reflection and transmission between two graphene laminates. Reproduced with permission [94]. Copyright 2019, Royal Society of Chemistry. (d) The schematic diagram of foldable and stretchable wrinkles. (e) The schematic diagram of electric or heat flow after adding GO or GNP. Reproduced with permission [109]. Copyright 2018, Elsevier.
Fig. 9. (a) Stepwise synthesis procedure for nickel decorated graphene sheets. (b) Thermal conductivity of various PC/SAN blends. (c) Total shielding effectiveness as a function of frequency for PC/SAN blends in X and Ku-band. Reproduced with permission [97]. Copyright 2015, Royal Society of Chemistry.
Fig. 10. Schematic of the fabrication procedure of GF/h-Fe3O4/PDMS composites and its effect in thermal conductivity and EMI SE enhancement. Reproduced with permission [16]. Copyright 2020, Elsevier.
Fig. 11. (a) Schematic process of preparing alternating multilayered CNF@GNS films through vacuum-assisted filtration. (b)Thermal conductivities of CNF@GNS5 film with different GNS filler loading. (c) Schematic diagrams of thermal conduction in CNF@GNS films (bottom) compared to direct mixed CNF/GNS (top). (d) EMI SE performance at the X-band with different content of GNS in the composite film. (e) Schematic illustration of EMW transfer across alternant layered CNF@GNS films. Reproduced with permission [100]. Copyright 2020, Elsevier.
Fig. 12. (a) Schematic delineations of the fabrication of Ni-graphene films. Schematic illustrations of (b, c) EMI shielding and (d, e) heat transfer mechanisms of Ni-G and Ni@G-P films. Reproduced with permission [105]. Copyright 2020, Elsevier.
Fig. 13. (a) The preparation process of the ordered multilayer film. (b) The optical photograph of the multilayer film. (c) SEM image of the multilayer film. (d) Thermal and electrical conductive schematic of the ordered multilayer film. Reproduced with permission [107]. Copyright 2016, Elsevier.
[1] |
W. Dai, L. Lv, T. Ma, X. Wang, J. Ying, Q. Yan, X. Tan, J. Gao, C. Xue, J. Yu, Y. Yao, Q. Wei, R. Sun, Y. Wang, T.H. Liu, T. Chen, R. Xiang, N. Jiang, Q. Xue, C.P. Wong, S. Maruyama, C.T. Lin, Adv. Sci. 8 (2021) 2003734.
DOI URL |
[2] |
X. Tan, J. Ying, J. Gao, Q. Yan, L. Lv, K. Nishimura, Q. Wei, H. Li, S. Du, B. Wu, R. Xiang, J. Yu, N. Jiang, C.T. Lin, W. Dai, Compos. Commun. 24 (2021) 100621.
DOI URL |
[3] |
J. Gao, Q. Yan, L. Lv, X. Tan, J. Ying, K. Yang, J. Yu, S. Du, Q. Wei, R. Xiang, Y. Yao, X. Zeng, R. Sun, C.P. Wong, N. Jiang, C.T. Lin, W. Dai, Chem. Eng. J. 419 (2021) 129609.
DOI URL |
[4] |
X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu, C.P. Wong, ACS Nano 11 (2017) 5167-5178.
DOI URL |
[5] | J. Li, M. Tsai, R. Chiu, E. He, A. Hsieh, M.F. Tsai, F. Chu, J.Y. Chen, S. Jian, S. Chen, Y.P. Wang, in: Proceeding of the IEEE 70th Electronics Components Technology Conference, 2020, pp. 931-937. |
[6] | M. Tsai, R. Chiu, E. He, J.Y. Chen, F. Chu, J. Tsai, Y.P. Wang, S. Jian, S. Chen, in: Proceeding of the IEEE 21st Electronic Packaging Technology Conference, 2019, pp. 601-607. |
[7] |
Q. Yan, W. Dai, J. Gao, X. Tan, L. Lv, J. Ying, X. Lu, J. Lu, Y. Yao, Q. Wei, R. Sun, J. Yu, N. Jiang, D. Chen, C.P. Wong, R. Xiang, S. Maruyama, C.T. Lin, ACS Nano 15 (2021) 6489-6498.
DOI URL |
[8] |
H. Hou, W. Dai, Q. Yan, L. Lv, F.E. Alam, M. Yang, Y. Yao, X. Zeng, J.B. Xu, J. Yu, N. Jiang, C.T. Lin, J. Mater. Chem. A 6 (2018) 12091-12097.
DOI URL |
[9] |
J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun, X. Zeng, R. Sun, J.B. Xu, B. Song, C.P. Wong, ACS Appl. Mater. Interfaces 9 (2017) 13544-13553.
DOI URL |
[10] | W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan, F.E. Alam, Y. Li, X. Zeng, J. Yu, Q. Wei, X. Xu, J. Wu, N. Jiang, S. Du, R. Sun, J. Xu, C.P. Wong, C.T. Lin, ACS Nano 13 (2019) 1547-1554. |
[11] | Q. Yan, F.E. Alam, J. Gao, W. Dai, X. Tan, L. Lv, J. Wang, H. Zhang, D. Chen, K. Nishimura, L. Wang, J. Yu, J. Lu, R. Sun, R. Xiang, S. Maruyama, H. Zhang, S. Wu, N. Jiang, C.T. Lin, Adv. Funct. Mater. (2021) 2104062. |
[12] |
J. Hansson, T.M.J. Nilsson, L. Ye, J. Liu, Int. Mater. Rev. 63 (2018) 22-45.
DOI URL |
[13] |
J. Gu, K. Ruan, Nano-Micro Lett. 13 (2021) 110.
DOI URL |
[14] |
S. Naghibi, F. Kargar, D. Wright, C.Y.T. Huang, A. Mohammadzadeh, Z. Barani, R. Salgado, A.A. Balandin, Adv. Electron. Mater. 6 (2020) 1901303.
DOI URL |
[15] |
Y. Zhang, Y.J. Heo, Y.R. Son, I. In, K.H. An, B.J. Kim, S.J. Park, Carbon 142 (2019) 445-460.
DOI URL |
[16] |
H. Fang, H. Guo, Y. Hu, Y. Ren, P.C. Hsu, S.L. Bai, Compos. Sci. Technol. 188 (2020) 107975.
DOI URL |
[17] |
X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu, S. Guo, Chem. Eng. J. 380 (2020) 122475.
DOI URL |
[18] |
K. Wu, Y. Xue, W. Yang, S. Chai, F. Chen, Q. Fu, Compos. Sci. Technol. 130 (2016) 28-35.
DOI URL |
[19] |
B. Wei, L. zhang, S. Yang, Chem. Eng. 404 (2021) 126437.
DOI URL |
[20] |
Y. Zhang, K. Ruan, J. Gu, Small 17 (2021) 2101951.
DOI URL |
[21] |
H. Jia, Q.Q. Kong, Z. Liu, X.X. Wei, X.M. Li, J.P. Chen, F. Li, X. Yang, G.H. Sun, C.M. Chen, Compos. Part A Appl. Sci. Manuf. 129 (2020) 105712.
DOI URL |
[22] |
M. Li, M. Wang, X. Hou, Z. Zhan, H. Wang, H. Fu, C.T. Lin, L. Fu, N. Jiang, J. Yu, Compos. B. Eng. 184 (2020) 107746.
DOI URL |
[23] |
J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai, S. Du, C. Li, N. Jiang, Z. Zhan, C.T. Lin, Compos. Part A Appl. Sci. Manuf. 87 (2016) 290-296.
DOI URL |
[24] |
W. Dai, J. Yu, Y. Wang, Y. Song, F.E. Alam, K. Nishimura, C.T. Lin, N. Jiang, J. Mater. Chem. A 3 (2015) 4884-4891.
DOI URL |
[25] | W. Dai, J. Yu, Y. Wang, Y. Song, H. Bai, K. Nishimura, H. Liao, N. Jiang, Macro- mol. Res. 22 (2014) 983-989. |
[26] |
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Compos. Part A Appl. Sci. Manuf. 128 (2020) 105670.
DOI URL |
[27] |
C. Liang, H. Qiu, Y. Han, H. Gu, P. Song, L. Wang, J. Kong, D. Cao, J. Gu, J. Mater. Chem. C 7 (2019) 2725-2733.
DOI URL |
[28] | K. Ruan, X. Zhong, X. Shi, J. Dang, J. Gu, Mater. Today Phys. 20 (2021) 100456. |
[29] |
X. Fan, G. Zhang, Q. Gao, J. Li, Z. Shang, H. Zhang, Y. Zhang, X. Shi, J. Qin, Chem. Eng. J. 372 (2019) 191-202.
DOI URL |
[30] |
L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu, C. Liang, J. Kong, L. Chen, J. Gu, Compos. Part A Appl. Sci. Manuf. 123 (2019) 293-300.
DOI URL |
[31] |
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong, J. Gu, Sci. Bull. 65 (2020) 616-622.
DOI URL |
[32] | Y. Guo, K. Ruan, J. Gu, Mater. Today Phys. 20 (2021) 10449. |
[33] |
J. Li, Y. Wang, T.N. Yue, Y.N. Gao, Y.D. Shi, J.B. Shen, H. Wu, M. Wang, Compos. Sci. Technol. 206 (2021) 108681.
DOI URL |
[34] |
B.K. Choi, H.J. Lee, W.K. Choi, M.K. Lee, J.H. Park, J.Y. Hwang, M.K. Seo, Synth. Met. 273 (2021) 116708.
DOI URL |
[35] |
Y.L. Guo, R.Z. Zhang, K. Wu, F. Chen, Q. Fu, Chin. J. Polym. Sci. 35 (2017) 1497-1507.
DOI URL |
[36] |
N. Agnihotri, K. Chakrabarti, A. De, RSC Adv. 5 (2015) 43765-43771.
DOI URL |
[37] |
L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, Y. Han, J. Gu, J. Kong, D. Pan, Z. Guo, Carbon 141 (2019) 506-514.
DOI |
[38] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI PMID |
[39] |
Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J.K. Kim, ACS Appl. Mater. Interfaces 9 (2017) 9059-9069.
DOI URL |
[40] |
H. Liu, R. Fu, X. Su, B. Wu, H. Wang, Y. Xu, X. Liu, Compos. Commun. 23 (2021) 100593.
DOI URL |
[41] |
Y. Shang, G. Yang, F. Su, Y. Feng, Y. Ji, D. Liu, R. Yin, C. Liu, C. Shen, Compos. Commun. 19 (2020) 147-153.
DOI URL |
[42] |
M. Shu, P. Zhang, X. Ding, Y. Gong, Y. Wang, R. Wang, K. Zheng, X. Tian, X. Zhang, Mater. Res. Express 6 (2019) 115352.
DOI URL |
[43] |
P.S. Liu, H.B. Qing, H.L. Hou, Y.Q. Wang, Y.L. Zhang, Mater. Des. 92 (2016) 823-828.
DOI URL |
[44] | J.M. Kim, M.G. Jang, Y. Lee, C. Han, W.N. Kim, J. Appl. Polym. Sci. 134 (2017) 44373. |
[45] |
B. Yao, X. Xu, H. Li, Z. Han, J. Hao, G. Yang, Z. Xie, Y. Chen, W. Liu, Q. Wang, H. Wang, Chem. Eng. J. 410 (2021) 128288.
DOI URL |
[46] | J. Li, S. Qi, M. Zhang, Z. Wang, J. Appl. Polym. Sci. 132 (2015) 42306. |
[47] |
Y. Guo, L. Pan, X. Yang, K. Ruan, Y. Han, J. Kong, J. Gu, Compos. Part A Appl. Sci. Manuf. 124 (2019) 105484.
DOI URL |
[48] |
Q. Zhang, L. Ning, Y. Shen, M. Wang, C. Wang, Y. Yan, Mater. Lett. 268 (2020) 127578.
DOI URL |
[49] |
Z. Shen, J. Feng, ACS Sustain, Chem. Eng. 7 (2019) 6259-6266.
DOI URL |
[50] |
AA. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8 (2008) 902-907.
DOI URL |
[51] |
AA. Balandin, ACS Nano 14 (2020) 5170-5178.
DOI URL |
[52] |
AA. Balandin, Nat. Mater. 10 (2011) 569-581.
DOI URL |
[53] |
B. Shen, W. Zhai, W. Zheng, Adv. Funct. Mater. 24 (2014) 4542-4548.
DOI URL |
[54] |
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu, W. Zhang, T. Zhou, Z. Zhang, X. Zhang, H.M. Cheng, W. Ren, Adv. Mater. 32 (2020) 1907411.
DOI URL |
[55] |
B. Kuang, W. Song, M. Ning, J. Li, Z. Zhao, D. Guo, M. Cao, H. Jin, Carbon 127 (2018) 209-217.
DOI URL |
[56] |
F. Kargar, Z. Barani, M. Balinskiy, A.S. Magana, J.S. Lewis, A.A. Balandin, Adv. Electron. Mater. 5 (2019) 1800558.
DOI URL |
[57] |
X. Mei, L. Lu, Y. Xie, W. Wang, Y. Tang, K.S. Teh, Nanoscale 11 (2019) 13587-13599.
DOI URL |
[58] |
Y. Wang, W. Wang, R. Xu, M. Zhu, D. Yu, Chem. Eng. J. 360 (2019) 817-828.
DOI |
[59] |
G. Lian, C.C. Tuan, L. Li, S. Jiao, Q. Wang, K.S. Moon, D. Cui, C.P. Wong, Chem. Mater. 28 (2016) 6096-6104.
DOI URL |
[60] |
X.H. Li, P. Liu, X. Li, F. An, P. Min, K.N. Liao, Z.Z. Yu, Carbon 140 (2018) 624-633.
DOI URL |
[61] |
X. Shen, Z. Wang, Y. Wu, X. Liu, Y.B. He, Q. Zheng, Q.H. Yang, F. Kang, J.K. Kim, Mater. Horiz. 5 (2018) 275-284.
DOI URL |
[62] |
H. Fang, Y. Zhao, Y. Zhang, Y. Ren, S.L. Bai, ACS Appl. Mater. Interfaces 9 (2017) 26447-26459.
DOI URL |
[63] |
S.Y. Kim, Y.J. Noh, J. Yu, Compos. Part A Appl. Sci. Manuf. 69 (2015) 219-225.
DOI URL |
[64] |
Z. Lu, L. Ma, J. Tan, H. Wang, X. Ding, Nanoscale 8 (2016) 16684-16693.
DOI URL |
[65] |
N. Agnihotri, K. Chakrabarti, A. De, RSC Adv. 5 (2015) 43765-43771.
DOI URL |
[66] |
F. Ren, D. Song, Z. Li, L. Jia, Y. Zhao, D. Yan, P. Ren, J. Mater. Chem. C 6 (2018) 1476-1486.
DOI URL |
[67] |
E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen, C. Gao, Carbon 133 (2018) 316-322.
DOI URL |
[68] |
X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu, P. Jiang, Y.W. Mai, Mater. Sci. Eng. R 142 (2020) 100577.
DOI URL |
[69] |
L. Lv, W. Dai, A. Li, C.T. Lin, Polymers 10 (2018) 1201.
DOI URL |
[70] |
A. Li, C. Zhang, Y.F. Zhang, Polymers 9 (2017) 437.
DOI URL |
[71] |
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu, J. Gu, Nano-Micro Lett. 13 (2021) 181.
DOI URL |
[72] |
H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Macromol. Mater. Eng. 306 (2021) 2100032.
DOI URL |
[73] |
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat 1 (2021) 413-431.
DOI URL |
[74] |
D. Munalli, G. Dimitrakis, D. Chronopoulos, S. Greedy, A. Long, Compos. B. Eng. 173 (2019) 106906.
DOI URL |
[75] |
D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, Z. Guo, Polym. Rev. 59 (2019) 280-337.
DOI URL |
[76] |
A. Iqbal, P. Sambyal, C.M. Koo, Adv. Funct. Mater. 30 (2020) 2000883.
DOI URL |
[77] |
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang, M.G. Ma, F. Chen, ACS Nano 12 (2018) 4583-4593.
DOI URL |
[78] |
X.H. Li, X. Li, K.N. Liao, P. Min, T. Liu, A. Dasari, Z.Z. Yu, ACS Appl. Mater. Interfaces 8 (2016) 33230-33239.
DOI URL |
[79] |
Y. Guo, K. Ruan, X. Shi, X. Yang, J. Gu, Compos. Sci. Technol. 193 (2020) 108134.
DOI URL |
[80] |
H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 59 (2016) 41-85.
DOI URL |
[81] |
AA. Balandin, Nat. Mater. 10 (2011) 569-581.
DOI URL |
[82] |
X. Xu, J. Chen, J. Zhou, B. Li, Adv. Mater. 30 (2018) 1705544.
DOI URL |
[83] |
X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong, J. Gu, M. Chen, J. Zhu, Adv. Compos. Hybrid Mater. 1 (2018) 207-230.
DOI URL |
[84] |
S.Y. Kwon, I.M. Kwon, Y.G. Kim, S. Lee, Y.S. Seo, Carbon 55 (2013) 285-290.
DOI URL |
[85] | Z. Wu, C. Xu, C. Ma, Z. Liu, H.M. Cheng, W. Ren, Adva. Mater. 31 (2019) 1900199. |
[86] |
S. Lu, Y. Bai, J. Wang, D. Chen, K. Ma, Q. Meng, X. Liu, Nano 14 (2019) 1950075.
DOI URL |
[87] |
Z. Barani, F. Kargar, A. Mohammadzadeh, S. Naghibi, C. Lo, B. Rivera, A.A. Ba- landin, Adv. Electron. Mater. 6 (2020) 2000520.
DOI URL |
[88] |
K.Z. Chudek, A. Wroblewska, S. Kowalczyk, A. Plichta, M. Zdrojek, Mater. 14 (2021) 2856.
DOI URL |
[89] |
S. Yang, W. Li, S. Bai, Q. Wang, J. Mater. Chem. C 6 (2018) 11209-11218.
DOI URL |
[90] |
H. Li, L. Jing, Z.L. Ngoh, R.Y. Tay, J. Lin, H. Wang, S.H. Tsang, E.H.T. Teo, ACS Appl. Mater. Interfaces 10 (2018) 41707-41716.
DOI URL |
[91] |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano-Micro Lett. 13 (2021) 91.
DOI URL |
[92] |
J. Li, X. Zhao, W. Wu, X. Ji, Y. Lu, L. Zhang, Chem. Eng. J. 415 (2021) 129054.
DOI URL |
[93] |
Y. Liang, Y. Tong, Z. Tao, Q. Guo, B. Hao, Z. Liu, Macromol. Mater. Eng. 306 (2021) 2100055.
DOI URL |
[94] |
S. Lin, S. Ju, J. Zhang, G. Shi, Y. He, D. Jiang, RSC Adv. 9 (2019) 1419-1427.
DOI URL |
[95] |
P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.H. Kim, C.M. Koo, Carbon 94 (2015) 494-500.
DOI URL |
[96] |
W.Y. Wang, X. Ma, Y.W. Shao, X.D. Qi, J.H. Yang, Y. Wang, J. Mater. Chem. A 9 (2021) 5033-5044.
DOI URL |
[97] |
S.P. Pawar, S. Stephen, S. Bose, V. Mittal, Phys. Chem. Chem. Phys. 17 (2015) 14922-14930.
DOI URL |
[98] |
X. Ye, J. Hu, B. Li, M. Hong, Y. Zhang, Chem. Eng. J. 361 (2019) 1110-1120.
DOI URL |
[99] |
Y. Liu, M. Lu, K. Wu, S. Yao, X. Du, G. Chen, Q. Zhang, L. Liang, M. Lu, Compos. Sci. Technol. 174 (2019) 1-10.
DOI URL |
[100] |
L. Li, Z. Ma, P. Xu, B. Zhou, Q. Li, J. Ma, C. He, Y. Feng, C. Liu, Compos. Part A Appl. Sci. Manuf. 139 (2020) 106134.
DOI URL |
[101] |
W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu, H. Jiang, F. Chen, Q. Fu, J. Mater. Chem. C 5 (2017) 3748-3756.
DOI URL |
[102] |
W. Yang, Y. Zhang, T. Liu, R. Huang, S. Chai, F. Chen, Q. Fu, ACS Sustain,Chem. Eng. 5 (2017) 9102-9113.
DOI URL |
[103] |
W. Yang, Y. Gong, X. Zhao, T. Liu, Y. Zhang, F. Chen, Q. Fu, ACS Sustain, Chem. Eng. 7 (2019) 5045-5056.
DOI URL |
[104] |
C. Liang, M. Hamidinejad, L. Ma, Z. Wang, C.B. Park, Carbon 156 (2020) 58-66.
DOI URL |
[105] |
L. Liang, P. Xu, Y. Wang, Y. Shang, J. Ma, F. Su, Y. Feng, C. He, Y. Wang, C. Liu, Chem. Eng. J. 395 (2020) 125209.
DOI URL |
[106] |
Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai, R. Song, Z. Pu, D. He, Z. Wu, S. Mu, Small 14 (2018) 1704332.
DOI URL |
[107] |
X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, Y. Wang, Compos. Sci. Technol. 136 (2016) 104-110.
DOI URL |
[108] |
M.C. Vu, D. Mani, J.B. Kim, T.H. Jeong, S. Park, G. Murali, I. In, J.C. Won, D. Losic, C.S. Lim, S.R. Kim, Compos. Part A Appl. Sci. Manuf. 149 (2021) 106574.
DOI URL |
[109] |
Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu, S. Chai, F. Chen, Q. Fu, Carbon 133 (2018) 435-445.
DOI URL |
[110] |
W. Yuan, Q. Xiao, L. Li, T. Xu, Appl. Therm. Eng. 106 (2016) 1067-1074.
DOI URL |
[1] | Menghe Zhu, Zhewen Ma, Lei Liu, Jianzhong Zhang, Siqi Huo, Pingan Song. Recent advances in fire-retardant rigid polyurethane foam [J]. J. Mater. Sci. Technol., 2022, 112(0): 315-328. |
[2] | Shuang Liu, Mengjie Sheng, Hao Wu, Xuetao Shi, Xiang Lu, Jinping Qu. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities [J]. J. Mater. Sci. Technol., 2022, 113(0): 147-157. |
[3] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[4] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[5] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
[6] | Likui Zhang, Yao Chen, Qian Liu, Wenting Deng, Yaoqun Yue, Fanbin Meng. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 111(0): 57-65. |
[7] | R.W. Yang, Y.P. Liang, J. Xu, X.Y. Meng, J.T. Zhu, S.Y. Cao, M.Y. Wei, R.X. Zhang, J.L. Yang, F. Gao. Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance [J]. J. Mater. Sci. Technol., 2022, 116(0): 94-102. |
[8] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
[9] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
[10] | Qing Liu, Yi Zhang, Yibin Liu, Chunmei Li, Zongxu Liu, Baoliang Zhang, Qiuyu Zhang. Magnetic field-induced strategy for synergistic CI/Ti3C2Tx/PVDF multilayer structured composite films with excellent electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 110(0): 246-259. |
[11] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
[12] | Xun Fan, Fengchao Wang, Qiang Gao, Yu Zhang, Fei Huang, Ronglin Xiao, Jianbin Qin, Han Zhang, Xuetao Shi, Guangcheng Zhang. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 177-185. |
[13] | Yunhai Zhang, Yongsheng Liu, Liyang Cao, Xutong Zheng, Yejie Cao, Jing Wang, Qing Zhang. Construction of continuous heat conductive channel, a double harvest strategy to enhance thermal conductance and bending strength of C/SiC composites [J]. J. Mater. Sci. Technol., 2022, 105(0): 101-108. |
[14] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
[15] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||