J. Mater. Sci. Technol. ›› 2022, Vol. 117: 146-157.DOI: 10.1016/j.jmst.2021.11.047
• Research Article • Previous Articles Next Articles
L.H. Liua,*(), W.J. Gaoa, X.S. Huangb, T. Zhangc, Z.Y. Liud, C. Yanga, W.W. Zhanga, W.R. Lic, L. Lic, P.J. Lib,*(
)
Received:
2021-03-30
Revised:
2021-11-21
Accepted:
2021-11-25
Published:
2022-02-16
Online:
2022-08-01
Contact:
L.H. Liu,P.J. Li
About author:
lipj@tsinghua.edu.cn (P.J. Li).L.H. Liu, W.J. Gao, X.S. Huang, T. Zhang, Z.Y. Liu, C. Yang, W.W. Zhang, W.R. Li, L. Li, P.J. Li. Shear-accelerated crystallization of glass-forming metallic liquids in high-pressure die casting[J]. J. Mater. Sci. Technol., 2022, 117: 146-157.
Fig. 1. (a) Schematic diagram of the entire process vacuum high-pressure die casting equipment, (b) three-dimensional model of the target casting. The thicknesses of the samples are 1, 2, 3, and 1 mm. All plates have a width of 10 mm.
Fig. 2. (a) X-ray diffraction pattern of the samples cast with different shot speeds; (b) transmission electron microscopy (TEM) image of S1233-1.1-2—the inset is the selected-area electron diffraction (SAED) pattern of the amorphous phase; (c) corresponding high-resolution TEM image in S1233-1.1-2; (d) TEM image of S1233-0.7-2—the inset is the SAED pattern of crystallized phases; (e) high-resolution TEM image of the amorphous matrix in S1233-0.7-2.
Sample | Tg (K) | Tx (K) | ΔTx (K) | ΔHx (J/g) | ωo (ppm) | fa (%) |
---|---|---|---|---|---|---|
S1233-0.7-1 | 680.0 ± 0.2 | 763.0 ± 1.1 | 83.0 ± 1.3 | 48.6 | 1630±134 | 97.2 |
S1233-0.7-2 | 680.4 ± 0.8 | 761.3 ± 0.7 | 80.9 ± 1.5 | 47.1 | 1700±144 | 94.5 |
S1233-0.7-3 | 679.3 ± 0.6 | 757.3 ± 0.2 | 78.0 ± 0.8 | 40.2 | 1721±134 | 79.9 |
S1233-1.1-1 | 677.0 ± 1.2 | 762.0 ± 0.3 | 85.0 ± 1.5 | 49.7 | 1639±176 | 100 |
S1233-1.1-2 | 677.8 ± 0.4 | 762.3 ± 0.6 | 84.5 ± 1.0 | 49.5 | 1750±188 | 100 |
S1233-1.1-3 | 678.5 ± 0.8 | 760.8 ± 0.7 | 82.3 ± 1.5 | 45.6 | 1758±256 | 90.6 |
S1233-1.5-1 | 678.0 ± 1.0 | 761.5 ± 0.4 | 83.5 ± 1.5 | 49.4 | 1700±156 | 100 |
S1233-1.5-2 | 677.4 ± 0.8 | 761.3 ± 0.5 | 83.9 ± 1.3 | 46.4 | 2000±176 | 94.0 |
S1233-1.5-3 | 678.0 ± 1.1 | 760.0 ± 0.5 | 82.0 ± 1.3 | 43.5 | 2180±266 | 88.2 |
S1233-2.3-1 | 678.1 ± 0.9 | 761.1 ± 0.6 | 83.0 ± 1.5 | 47.5 | 1870±156 | 95.4 |
S1233-2.3-2 | 678.4 ± 1.2 | 760.0 ± 1.1 | 82.6 ± 2.3 | 45.5 | 2215±176 | 91.3 |
S1233-2.3-3 | 677.1 ± 1.2 | 757.8 ± 1.1 | 80.7 ± 2.3 | 42.4 | 2280±156 | 85.2 |
SSC | 679.2 ± 0.9 | 762.5 ± 1.3 | 83.3 ± 2.2 | 49.8 | 623±132 | 100 |
Table 1. Glass-transition temperature (Tg), crystallization temperature (Tx), supercooled liquid region (ΔTx), enthalpy of crystallization (ΔHx), content of oxygen (ωO), and content of amorphous phase (fa) of the Zr55Cu30Ni5Al10 bulk metallic glass (BMG) samples prepared using different processing parameters. SSC indicates Zr55Cu30Ni5Al10 BMG samples with diameters of 3 mm prepared by suction casting.
Sample | Tg (K) | Tx (K) | ΔTx (K) | ΔHx (J/g) | ωo (ppm) | fa (%) |
---|---|---|---|---|---|---|
S1233-0.7-1 | 680.0 ± 0.2 | 763.0 ± 1.1 | 83.0 ± 1.3 | 48.6 | 1630±134 | 97.2 |
S1233-0.7-2 | 680.4 ± 0.8 | 761.3 ± 0.7 | 80.9 ± 1.5 | 47.1 | 1700±144 | 94.5 |
S1233-0.7-3 | 679.3 ± 0.6 | 757.3 ± 0.2 | 78.0 ± 0.8 | 40.2 | 1721±134 | 79.9 |
S1233-1.1-1 | 677.0 ± 1.2 | 762.0 ± 0.3 | 85.0 ± 1.5 | 49.7 | 1639±176 | 100 |
S1233-1.1-2 | 677.8 ± 0.4 | 762.3 ± 0.6 | 84.5 ± 1.0 | 49.5 | 1750±188 | 100 |
S1233-1.1-3 | 678.5 ± 0.8 | 760.8 ± 0.7 | 82.3 ± 1.5 | 45.6 | 1758±256 | 90.6 |
S1233-1.5-1 | 678.0 ± 1.0 | 761.5 ± 0.4 | 83.5 ± 1.5 | 49.4 | 1700±156 | 100 |
S1233-1.5-2 | 677.4 ± 0.8 | 761.3 ± 0.5 | 83.9 ± 1.3 | 46.4 | 2000±176 | 94.0 |
S1233-1.5-3 | 678.0 ± 1.1 | 760.0 ± 0.5 | 82.0 ± 1.3 | 43.5 | 2180±266 | 88.2 |
S1233-2.3-1 | 678.1 ± 0.9 | 761.1 ± 0.6 | 83.0 ± 1.5 | 47.5 | 1870±156 | 95.4 |
S1233-2.3-2 | 678.4 ± 1.2 | 760.0 ± 1.1 | 82.6 ± 2.3 | 45.5 | 2215±176 | 91.3 |
S1233-2.3-3 | 677.1 ± 1.2 | 757.8 ± 1.1 | 80.7 ± 2.3 | 42.4 | 2280±156 | 85.2 |
SSC | 679.2 ± 0.9 | 762.5 ± 1.3 | 83.3 ± 2.2 | 49.8 | 623±132 | 100 |
Fig. 3. (a) Differential scanning calorimetry curves of the specimens with thicknesses of 2 mm cast at different shot speeds. (b) Volume fraction of the amorphous phase of the same specimens.
Fig. 4. X-ray fluoroscopy images of castings prepared with different shot speeds and pore size distributions: (a) and (d) 0.7 m/s, (b) and (e) 1.1 m/s, and (c) and (f) 2.3 m/s. The thickness of the cast bar is 2 mm.
Fig. 5. Flow fields of the Zr55C30Ni5Al10 glass-forming liquid under different shot speeds of the plunger: (a) 0.7, (b) 1.1, (c) 1.5, and (d) 2.3 m/s. The units of the color bar are meters per second.
Fig. 6. Flow rates as a function of time for the glass-forming liquid processed at various shot speeds: (a) 0.7, (b) 1.1, (c) 1.5, and (d) 2.3 m/s. (e) Flow field of the glass-forming liquid at the end stage of the filling process, where the units of the color bar are meters per second. (f) Reynolds number in castings with different thicknesses and prepared by different shot speeds.
Fig. 7. Flow patterns on the surfaces of castings with thicknesses of 2 mm fabricated at different shot speeds: (a) 1.1 and (b) 2.3 m/s; Corresponding illustration on the right is flow patterns in laminar and turbulent flow; (c) Scanning electron micrograph of a typical pore in a casting and the element distribution along the direction away from the edge; (d) DSC curves of the Zr55Cu30Ni5Al10 BMG prepared with different processing route.
Fig. 8. (a) Diagram of shear behavior in the glass-forming liquid during the filling process; (b) temperature-dependent critical shear rate for flow-dominated crystallization.
Fig. 9. (a) Flow fields of the glass-forming liquids under different shot speeds, the units of the color bar are meters per second, (b) shear rates of the glass-forming liquid at different positions, (c) relationships between the shear and critical shear rates, and (d) shear-accelerated crystallization regions in a casting.
[1] |
P.G. Debenedetti, F.H. Stillinger, Nature 410 (2010) 259-267.
DOI URL |
[2] |
W. Chen, Q.L. Zhang, J.Y. Zhao, L.B. Li, J. Appl. Phys. 127 (2020) 241101.
DOI URL |
[3] |
G.J. Dunderdale, S.J. Davidson, A.J. Ryan, O.O. Mykhaylyk, Nat. Commun. 11 (2020) 3372.
DOI PMID |
[4] |
X. Cheng, J.H. McCoy, J.N. Israelachvili, I. Cohen, Science 333 (2011) 1276-1279.
DOI URL |
[5] | Y.L. Wu, D. Derks, A.V. Blaaderen, A. Imhof, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 10564-10569. |
[6] |
R. Busch, I. Gallino, JOM 69 (2017) 2178-2186.
DOI URL |
[7] |
J.V. Parambil, M. Schaepertoens, D.R. Williams, J.Y.Y. Heng, Cryst. Growth Des. 11 (2011) 4353-4359.
DOI URL |
[8] |
L. Liu, K.C. Chan, T. Zhang, J. Alloy. Compd. 396 (2005) 114-121.
DOI URL |
[9] |
C. Yang, L.H. Liu, Y.G. Yao, Y.H. Li, Y.Y. Li, J. Alloys Compd. 586 (2014) 542-548.
DOI URL |
[10] |
D. Lee, B. Zhao, E. Perim, H. Zhang, P. Gong, Y. Gao, Y. Liu, C. Toher, S. Curtarolo, J. Schroers, Acta Mater 121 (2016) 68-77.
DOI URL |
[11] |
Y.C. Hu, P.F. Guan, Q. Wang, Y. Yang, H.Y. Bai, W.H. Wang, J. Chem. Phys. 146 (2017) 24507.
DOI URL |
[12] |
J. Ding, M. Asta, R.O. Ritchie, Phys. Rev. B 93 (2016) 140204.
DOI URL |
[13] |
C. Bhugra, M.J. Pikal, J. Pharm. Sci. 97 (2008) 1329-1349.
DOI URL |
[14] |
W. Zhai, L.H. Nie, X.D. Hui, Y. Xiao, T. Wang, B. Wei, J. Mater. Sci. Technol. 45 (2020) 157-161.
DOI |
[15] |
W. Longjun, Z. Zhengwang, L. Dingming, F. Huameng, L. Hong, W. Aimin, Z. Hongwei, L. Zhengkun, Z. Long, Z. Haifeng, J. Mater. Sci. Technol. 37 (2020) 64-70.
DOI |
[16] |
R. Blaak, S. Auer, D. Frenkel, H. Löwen, Phys. Rev. Lett. 93 (2004) 068303.
DOI URL |
[17] |
R.S. Graham, P.D. Olmsted, Phys. Rev. Lett. 103 (2009) 115702.
DOI URL |
[18] |
S. Stroobants, M. Callewaert, M. Krzek, S. Chinnu, P. Gelin, I. Ziemecka, J.F. Lut-sko, W.D. Malsche, D. Maes, Cryst. Growth Des. 20 (2020) 1876.
DOI URL |
[19] |
A.V. Mokshin, J.L. Barrat, J. Chem. Phys. 130 (2009) 034502.
DOI URL |
[20] |
A. Goswami, I.S. Dalal, J.K. Singh, Phys. Rev. Lett. 126 (2021) 195702.
DOI URL |
[21] |
F. Mura, A. Zaccone, Phys. Rev. E 93 (2016) 042803.
DOI URL |
[22] |
J. Vermant, M.J. Solomon, J. Phys.: Condens. Matter 17 (2005) R187.
DOI URL |
[23] |
F. Mura, A. Zaccone, Phys. Rev. E 93 (2016) 42803.
DOI URL |
[24] |
Z. Shao, J.P. Singer, Y. Liu, Z. Liu, H. Li, M. Gopinadhan, C.S. O’Hern, J. Schroers, C.O. Osuji, Phys. Rev. E 91 (2015) 20301.
DOI URL |
[25] |
B. Lohwongwatana, J. Schroers, W.L. Johnson, Phys. Rev. Lett. 96 (2006) 75503.
PMID |
[26] |
A. Inoue, T. Nakamura, N. Nishiyama, T. Sugita, T. Masumoto, Key Eng. Mater. 81-83 (1993) 147-152.
DOI URL |
[27] | A. Inoue, T. Nakamura, T. Sugita, T. Zhang, T. Masumoto, Mater. Trans. 34 (1993) 351-358JIM. |
[28] |
X.B. Li, Z.P. Guo, S.M. Xiong, Mater. Charact. 129 (2017) 344-352.
DOI URL |
[29] |
J. Song, S.M. Xiong, M. Li, J. Allison, J. Alloy Compd. 477 (2009) 863-869.
DOI URL |
[30] |
X. Hua, Q. Yang, D.D. Zhang, F.Z. Meng, C. Chen, Z.H. You, J.H. Zhang, S.H. Lv, J. Meng, J. Mater. Sci. Technol. 53 (2020) 174-184.
DOI URL |
[31] |
P. Ramasamy, A. Szabo, S. Borzel, J. Eckert, M. Stoica, A. Bárdos, Sci. Rep. 6 (2016) 35258.
DOI URL |
[32] |
L.H. Liu, T. Zhang, Z.Y. Liu, C.Y. Yu, X.X. Dong, L. He, K. Gao, X.G. Zhu, W.H. Li, C.Y. Wang, P.J. Li, L.C. Zhang, L. Li, Materials (Basel) 11 (2018) 2338.
DOI URL |
[33] |
L.H. Liu, J. Ma, C.Y. Yu, X.S. Huang, L.J. He, L.C. Zhang, P.J. Li, Z.Y. Liu, J. Mater. Process. Technol. 244 (2017) 87-96.
DOI URL |
[34] |
L.H. Liu, T. Zhang, Z.Y. Liu, C.Y. Wang, L.J. He, P.J. Li, W.R. Li, L. Li, Mater. Lett. 247 (2019) 215-218.
DOI |
[35] |
G. Kumar, J. Schroers, A. Desai, Adv. Mater. 23 (2011) 461-476.
DOI URL |
[36] |
M.S. Dargusch, G. Dour, N. Schauer, C.M. Dinnis, G. Savage, J. Mater. Process. Technol. 180 (2006) 37-43.
DOI URL |
[37] | E.J. Vinarcik, High Integrity Die Casting Processes, John Wiley & Sons, Hoboken, 2002. |
[38] |
D.R. Gunasegaram, B.R. Finnin, F.B. Polivka, Mater. Sci. Technol. 23 (2007) 847-856.
DOI URL |
[39] |
X.P. Niu, B.H. Hu, I. Pinwill, H. Li, J. Mater. Process. Technol. 105 (2000) 119-127.
DOI URL |
[40] |
A. Gebert, J. Eckert, L. Schultz, Acta Mater 46 (1998) 5475-5482.
DOI URL |
[41] |
C.T. Liu, M.F. Chisholm, M.K. Miller, Intermetallics 10 (2002) 1105-1112.
DOI URL |
[42] |
M. Yamasaki, S. Kagao, Y. Kawamura, Scr. Mater. 53 (2005) 63-67.
DOI URL |
[43] |
T. Kanomata, Y. Sato, Y. Sugawara, H.M. Kimura, T. Kaneko, A. Inoue, J. Alloys Compd. 461 (2008) 39-41.
DOI URL |
[44] |
X.S. Huang, Z.G. Lv, L.J. He, G.B. Mi, P.J. Li, Mater. Trans. 54 (2013) 1491-1495.
DOI URL |
[45] |
Y. Yokoyama, E. Mund, A. Inoue, L. Schultz, Mater. Trans. 48 (2007) 3190-3192.
DOI URL |
[46] | X. Li, S.M. Xiong, Z. Guo, Mater. Sci. Eng., A 633 (2015) 35-41. |
[47] | H. Schlichting, K. Gersten, Boundary-layer Theory, 9th ed., Springer -Verlag GmbH Berlin Heidelberg, Berlin, 2017. |
[48] | J.A. Fay, Introduction to Fluid Mechanics, MIT press, Cambridge, 1994. |
[49] |
B.S. Murty, D.H. Ping, K. Hono, A. Inoue, Acta Mater 48 (2000) 3985-3996.
DOI URL |
[50] |
Z. Wang, L. Huang, G.Q. Yue, B. Shen, F. Dong, R.J. Zhang, Y.X. Zheng, S.Y. Wang, C.Z. Wang, M.J. Kramer, J. Phys. Chem. B 120 (2016) 9223-9229.
DOI URL |
[51] |
Z. Zhao, J. Mu, H. Zhang, Y. Wang, Y. Ren, J. Mater. Sci. Technol. 79 (2021) 212-221.
DOI URL |
[52] |
W.H. Zhou, F.H. Duan, Y.H. Meng, C.C. Zheng, H.M. Chen, A.G. Huang, Y.X. Wang, Y. Li, Acta Mater 220 (2021) 117345.
DOI URL |
[53] |
W.H. Wang, Z.X. Wang, D.Q. Zhao, M.B. Tang, W. Utsumi, X.L. Wang, Phys. Rev. B 70 (2004) 92203.
DOI URL |
[54] |
S. Mukherjee, J. Schroers, W.L. Johnson, W.K. Rhim, Phys. Rev. Lett. 94 (2005) 245501.
DOI URL |
[55] |
J. Lu, G. Ravichandran, W.L. Johnson, Acta Mater 51 (2003) 3429-3443.
DOI URL |
[56] |
O. Haruyama, Y. Nakayama, R. Wada, H. Tokunaga, J. Okada, T. Ishikawa, Y. Yokoyama, Acta Mater 58 (2010) 1829-1836.
DOI URL |
[57] |
F. Puosi, A. Pasturel, Acta Mater 174 (2019) 387-397.
DOI |
[58] |
L. Wang, C.X. Peng, Y.Q. Wang, Y.N. Zhang, J. Phys.-Condens. Matter. 18 (2006) 7559-7568.
DOI URL |
[59] | M.X. Pan, J.G. Wang, Y.S. Yao, D.Q. Zhao, W.H. Wang, J. Phys.-Condens. Matter. 13 (2001) 3553-3555. |
[60] |
W.H. Wang, R.J. Wang, D.Y. Dai, D.Q. Zhao, M.X. Pan, Y.S. Yao, Appl. Phys. Lett. 79 (2001) 1106-1108.
DOI URL |
[61] |
X.K. X, L.L. Li, B. Zhang, W.W. Wang, Y. Wu, Phys. Rev. Lett. 99 (2007) 95501.
DOI URL |
[62] |
Y.Q. Cheng, E. Ma, H.W. Sheng, Phys. Rev. Lett. 102 (2009) 245501.
DOI URL |
[63] |
Y.C. Hu, F.X. Li, M.Z. Li, H.Y. Bai, W.H. Wang, Nat. Commun. 6 (2015) 8310.
DOI PMID |
[1] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
[2] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[3] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[4] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[5] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[6] | Shuang Jiang, Lin Peng Ru, Kristián Máthis, Hai-Le Yan, Gergely Farkas, Zoltán Hegedues, Ulrich Lienert, Johan Moverare, Xiang Zhao, Liang Zuo, Nan Jia, Yan-Dong Wang. Shear banding-induced 〈c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites [J]. J. Mater. Sci. Technol., 2022, 110(0): 260-268. |
[7] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[8] | Jianjun Li, Feng Qin, Dingshun Yan, Wenjun Lu, Jiahao Yao. Shear instability in heterogeneous nanolayered Cu/Zr composites [J]. J. Mater. Sci. Technol., 2022, 105(0): 81-91. |
[9] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[10] | Devashish Rajpoot, R. Lakshmi Narayan, Long Zhang, Punit Kumar, Haifeng Zhang, Parag Tandaiya, Upadrasta Ramamurty. Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite [J]. J. Mater. Sci. Technol., 2022, 106(0): 225-235. |
[11] | Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 1-17. |
[12] | Xuelian Wu, Si Lan, Xiyang Li, Ming Yang, Zhenduo Wu, Xiaoya Wei, Haiyan He, Muhammad Naeem, Jie Zhou, Zhaoping Lu, Elliot Paul Gilbert, Dong Ma, Xun-Li Wang. Continuous chemical redistribution following amorphous-to-crystalline structural ordering in a Zr-Cu-Al bulk metallic glass [J]. J. Mater. Sci. Technol., 2022, 101(0): 285-293. |
[13] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[14] | Langting Zhang, Yajuan Duan, Eloi Pineda, Hidemi Kato, Jean-Marc Pelletier, Jichao Qiao. Effect of physical aging and cyclic loading on power-law creep of high-entropy metallic glass [J]. J. Mater. Sci. Technol., 2022, 115(0): 1-9. |
[15] | Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing [J]. J. Mater. Sci. Technol., 2022, 115(0): 166-176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||