J. Mater. Sci. Technol. ›› 2022, Vol. 114: 42-54.DOI: 10.1016/j.jmst.2021.10.002
• Research Article • Previous Articles Next Articles
Tianbing Hea,*(), Tiwen Lua,b, Daniel Şopuc, Xiaoliang Hana, Haizhou Lub, Kornelius Nielschd,e,f, Jürgen Eckertc,g, Nevaf Ciftcih, Volker Uhlenwinkelh,i, Konrad Kosibaa, Sergio Scudinoa,*(
)
Received:
2021-08-10
Revised:
2021-09-09
Accepted:
2021-10-02
Published:
2022-07-01
Online:
2022-01-05
Contact:
Tianbing He,Sergio Scudino
About author:
s.scudino@ifw-dresden.de (S. Scudino).Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy[J]. J. Mater. Sci. Technol., 2022, 114: 42-54.
NiTi (vol.%) | | | | | | | | E (GPa) | G (GPa) | υ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 99.0 ± 0.6 | - | - | - | - | 1864 ± 37 | 1.8 ± 0.1 | 94 ± 1 | 35 ± 1 | 0.359 ± 0.002 |
10 | 99.7 ± 0.7 | 974 ± 51 | 1.2 ± 0.2 | 1705 ± 89 | 2.3 ± 0.2 | 1811 ± 35 | 3.9 ± 0.9 | 89 ± 3 | 32 ± 1 | 0.374 ± 0.006 |
20 | 99.9 ± 0.6 | 820 ± 69 | 1.1 ± 0.2 | 1566 ± 56 | 2.5 ± 0.3 | 1841 ± 145 | 5.6 ± 2.2 | 83 ± 5 | 30 ± 2 | 0.380 ± 0.007 |
40 | 99.5 ± 0.7 | 604 ± 93 | 1.2 ± 0.2 | 1603 ± 63 | 4.3 ± 0.5 | 1874 ± 118 | 10.7 ± 2.8 | 74 ± 3 | 27 ± 1 | 0.393 ± 0.008 |
60 | 98.5 ± 0.8 | 370 ± 10 | 1.1 ± 0.1 | 1597 ± 41 | 6.3 ± 0.3 | 1920 ± 73 | 17.2 ± 4.4 | 66 ± 1 | 23 ± 1 | 0.403 ± 0.003 |
100 | 96.3 ± 0.2 | 151 ± 1 | 0.9 ± 0.1 | 1260 ± 12 | 7.3 ± 0.1 | 1455 ± 12 | 14.5 ± 0.3 | 63 | 22 | 0.438 |
Table 1. Summary of properties of the monolithic BMG, BMG composites and NiTi alloy: ${{\rho }_{\text{r}}}$ is the relative density; $\sigma _{y}^{1\text{st}}$, $\sigma _{y}^{2\text{nd}}$ and ${{\sigma }_{f}}$ are the first yield, second yield and fracture strength; $\varepsilon _{y}^{1\text{st}}$, $\varepsilon _{y}^{2\text{nd}}$ and ${{\varepsilon }_{f}}$ correspond to the strain at the first and second yield and at fracture; E and G are the Young's and shear modulus and υ is the Poisson's ratio. Uncertainties here and elsewhere are one standard deviation. The elastic properties of the NiTi alloy (100 vol.% NiTi) cannot be obtained via ultrasonic method because of residual porosity; the data for the NiTi alloy reported in the table are taken from Ref. [51].
NiTi (vol.%) | | | | | | | | E (GPa) | G (GPa) | υ |
---|---|---|---|---|---|---|---|---|---|---|
0 | 99.0 ± 0.6 | - | - | - | - | 1864 ± 37 | 1.8 ± 0.1 | 94 ± 1 | 35 ± 1 | 0.359 ± 0.002 |
10 | 99.7 ± 0.7 | 974 ± 51 | 1.2 ± 0.2 | 1705 ± 89 | 2.3 ± 0.2 | 1811 ± 35 | 3.9 ± 0.9 | 89 ± 3 | 32 ± 1 | 0.374 ± 0.006 |
20 | 99.9 ± 0.6 | 820 ± 69 | 1.1 ± 0.2 | 1566 ± 56 | 2.5 ± 0.3 | 1841 ± 145 | 5.6 ± 2.2 | 83 ± 5 | 30 ± 2 | 0.380 ± 0.007 |
40 | 99.5 ± 0.7 | 604 ± 93 | 1.2 ± 0.2 | 1603 ± 63 | 4.3 ± 0.5 | 1874 ± 118 | 10.7 ± 2.8 | 74 ± 3 | 27 ± 1 | 0.393 ± 0.008 |
60 | 98.5 ± 0.8 | 370 ± 10 | 1.1 ± 0.1 | 1597 ± 41 | 6.3 ± 0.3 | 1920 ± 73 | 17.2 ± 4.4 | 66 ± 1 | 23 ± 1 | 0.403 ± 0.003 |
100 | 96.3 ± 0.2 | 151 ± 1 | 0.9 ± 0.1 | 1260 ± 12 | 7.3 ± 0.1 | 1455 ± 12 | 14.5 ± 0.3 | 63 | 22 | 0.438 |
Fig. 1. SEM micrographs (a-d) and CT reconstructions (e-h) of the BMG composites with different volume fractions of NiTi: (a, e) 10-BMGC, (b, f) 20-BMGC, (c, g) 40-BMGC and (d, h) 60-BMGC. The dark contrast in the SEM micrographs and the yellow phase in the CT reconstructions correspond to the NiTi particles. (i) XRD patterns of the monolithic BMG, BMG composites and NiTi alloy. (j) Bright-field TEM image of the 40-BMGC; the inset in (j) shows the selected area diffraction pattern (SAED) of the glassy matrix (MG). (k) HRTEM image of the interface between the B2 phase and glassy matrix corresponding to the area marked e in (j).
Fig. 2. (a) Representative compressive stress-strain curves for the monolithic BMG, BMG composites and NiTi alloy and (inset) enlarged view of the curves delimited by the red dotted box corresponding to the first yield. SEM micrographs of the BMG composites after fracture: (b) 20-BMGC, (c) 40-BMGC and (d) 60-BMGC.
Fig. 3. (a) Cyclic loading-unloading stress-strain curves of 40-BMGC and (inset) schematic of the specimen shape; (b) XRD patterns and (c-h) SEM micrographs of the composite after different loading-unloading cycles: (c) before loading, (d, e) 2.0% strain ((e) is the enlarged view of the dotted area in (d); SBs = shear bands), (f) 4.0% strain, (g) 6.5% strain and (h) fractured (9.5% strain).
Fig. 4. (a) Cyclic loading-unloading stress-strain curves of 60-BMGC; (b) XRD patterns and (c-h) SEM micrographs of the composite after different loading-unloading cycles: (c) before loading, (d) 2.0% strain, (e) 4.0% strain (the inset shows the enlarged view of the dotted area; SBs = shear bands), (f) 6.5% strain, (g) 9.5% strain and (h) fractured (17.5% strain).
Fig. 5. (a) Macroscopic first yield strength of the BMG composites and (b) confining stress (i.e. the contribution of confinement to the first yield strength) as a function of NiTi content. (c) High-energy XRD patterns of the NiTi alloy, 40-BMGC and 60-BMGC at loading stress of 80 MPa. (d) Variation of the strain tensor of the B2 phase in the NiTi alloy and of the B2 and glassy phase (MG) in the 40-BMGC and 60-BMGC during the early stage of deformation. The yield strength of the B2 phase ($\sigma _{y}^{\text{XRD}}$) is marked by arrows. The strain components of the glassy phase are shown only up to the composite yield; beyond the yield, fitting was not possible because the progressively stronger overlap of the B19´ phase to the amorphous maximum. (e) Variation of the normalized B2 intensity in the NiTi alloy, 40-BMGC and 60-BMGC during loading, representing the evolution of the martensitic transformation. The inset shows an enlarged view of the area corresponding to the dashed box. (f) Confining stress ($\text{ }\!\!\Delta\!\!\text{ }{{\sigma }^{\text{XRD}}}$) parallel and perpendicular to the loading axis in the 40-BMGC and 60-BMGC evaluated by HEXRD.
Fig. 6. (a) Cyclic loading-unloading stress-strain curves, (b) XRD patterns after different loading-unloading cycles of the NiTi alloy. (c) DSC scans of NiTi alloy, 40-BMGC and 60-BMGC. The DSC scan exhibits a two-step martensitic transformation (B2 → R → B19΄) upon cooling. During heating, the transformation from martensite to austenite is apparently a single-step transformation because of the overlap of the peaks. The R phase start temperature (Rs) and austenite finish temperature (Af) are 312 ± 3 K and 315 ± 2 K, respectively, for both NiTi alloy and BMGCs. (d) Normalized residual strain after different loading-unloading cycles in NiTi alloy, 40-BMGC and 60-BMGC. (e) Normalized shear band (SB) density as a function of the loading strain and loading stress. (f) Relationship between the residual strain resulting from shear banding and normalized shear band density in the 40-BMGC and 60-BMGC specimens.
Fig. 7. Schematic illustration of shear band formation via the sequential activation of the shear transformation zones (STZ) in a shape memory BMGC with increasing load from (a) to (d). The non-activated STZs are represented by circles, whereas activated STZs are depicted as ellipses. The surface relief formed by the martensitic transformation from B2 to B19´ generates a stress field in the adjacent glassy matrix which activates a STZ. The stress field is then transmitted from one STZ to the following one, forming a shear band. The shear band formed in this way propagates through the glassy phase and, when impinging the B2 phase, the associated stress field locally triggers the martensitic transformation.
Fig. 8. (a) Common neighbor analysis (CNA) showing the martensitic transformation during loading. (b) Spatially-resolved maps obtained by MD simulations of the eigenvector ν1 representing the strain magnitude and direction along one of the principal strain axes (the second eigenvector is perpendicular to ν1). The magnitude of the eigenvector is represented by the length of the vectors. (c) Angle formed by the eigenvector ν1 with the x axis showing that the direction of the principal strain axis (i.e. the eigenvector ν1) is the same along the shear band and in the martensite.
[1] |
M.M. Trexler, N.N. Thadhani, Prog. Mater. Sci. 55 (2010) 759-839.
DOI URL |
[2] |
C. Liu, V. Roddatis, P. Kenesei, R. Maaß, Acta Mater 140 (2017) 206-216.
DOI URL |
[3] |
R. Maaß, J.F. Löffler, Adv. Funct. Mater. 25 (2015) 2353-2368.
DOI URL |
[4] |
J. Qiao, H. Jia, P.K. Liaw, Mater. Sci. Eng. R 100 (2016) 1-69.
DOI URL |
[5] |
H. Zhou, S. Qu, W. Yang, Int. J. Plast. 44 (2013) 147-160.
DOI URL |
[6] |
H. Choi-Yim, W.L. Johnson, Appl. Phys. Lett. 71 (1997) 3808-3810.
DOI URL |
[7] |
C. Fan, A. Inoue, Appl. Phys. Lett. 77 (2000) 46-48.
DOI URL |
[8] |
C.C. Hays, C.P. Kim, W.L. Johnson, Phys. Rev. Lett. 84 (2000) 2901-2904.
URL PMID |
[9] |
R.D. Conner, R.B. Dandliker, W.L. Johnson, Acta Mater 46 (1998) 6089-6102.
DOI URL |
[10] |
J. Eckert, J. Das, S. Pauly, C. Duhamel, J. Mater. Res. 22 (2007) 285-301.
DOI URL |
[11] |
M. Ferry, K.J. Laws, C. White, D.M. Miskovic, K.F. Shamlaye, W. Xu, O. Biletska, MRS Commun. 3 (2013) 1-12.
DOI URL |
[12] | G. Xie, D.V. Louzguine-Luzgin, H. Kimura, A. Inoue, F. Wakai, Appl. Phys. Lett. 92 (2008) 121907. |
[13] |
S. Cardinal, J.M. Pelletier, G.Q. Xie, F. Mercier, F. Dalmas, J. Alloys Compd. 782 (2019) 59-68.
DOI URL |
[14] |
H. Choi-Yim, R. Busch, U. Köster, W.L. Johnson, Acta Mater 47 (1999) 2455-2462.
DOI URL |
[15] |
J. Zhou, Y. Wu, H. Wang, X. Liu, S. Jiang, X. Wang, Z. Lu, J. Alloys Compd. 806 (2019) 1497-1508.
DOI URL |
[16] |
J. Eckert, M. Seidel, A. Kübler, U. Klement, L. Schultz, Scr. Mater. 38 (1998) 595-602.
DOI URL |
[17] | B. Bartusch, F. Schurack, J. Eckert, uuml, rgen, Mater. Trans 43 (2002) 1979-1984. |
[18] | L. Huang, W. Tan, S. Li, Y. Li, J. Alloys Compd. (2019) 152605. |
[19] |
G. Xie, D.V. Louzguine-Luzgin, M. Fukuhara, H. Kimura, A. Inoue, Intermetallics 18 (2010) 1973-1977.
DOI URL |
[20] |
S. Cardinal, J.M. Pelletier, G.Q. Xie, F. Mercier, Mater. Sci. Eng. A 711 (2018) 405-414.
DOI URL |
[21] |
D.H. Bae, M.H. Lee, D.H. Kim, D.J. Sordelet, Appl. Phys. Lett. 83 (2003) 2312-2314.
DOI URL |
[22] |
Z.H. Chu, H. Kato, G.Q. Xie, G.Y. Yuan, W.J. Ding, A. Inoue, J. Non-Cryst. Solids 358 (2012) 1263-1267.
DOI URL |
[23] | J.K. Lee, H.J. Kim, T.S. Kim, Y.C. Kim, J.C. Bae, J. Alloys Compd. 434-435 (2007) 336-339. |
[24] | G. Xie, D.V. Louzguine-Luzgin, A. Inoue, J. Alloys Compd. 509 (2011) S214-S218. |
[25] |
S. Pauly, S. Gorantla, G. Wang, U. Kühn, J. Eckert, Nat. Mater. 9 (2010) 473.
DOI URL PMID |
[26] |
D.C. Hofmann, Science 329 (2010) 1294-1295.
DOI URL |
[27] |
Y. Wu, Y. Xiao, G. Chen, C.T. Liu, Z. Lu, Adv. Mater. 22 (2010) 2770-2773.
DOI URL |
[28] |
S.S. Jiang, K.F. Gan, Y.J. Huang, P. Xue, Z.L. Ning, J.F. Sun, A.H.W. Ngan, Int. J. Plast. 125 (2020) 52-62.
DOI URL |
[29] |
J. Zhang, L. Zhang, H. Zhang, H. Fu, H. Li, H. Zhang, Scr. Mater. 173 (2019) 11-15.
DOI URL |
[30] |
L. Zhang, R.L. Narayan, H.M. Fu, U. Ramamurty, W.R. Li, Y.D. Li, H.F. Zhang, Acta Mater 168 (2019) 24-36.
DOI URL |
[31] | L. Zhang, R.L. Narayan, B.A. Sun, T.Y. Yan, U. Ramamurty, J. Eckert, H.F. Zhang, Phys. Rev. Lett. 125 (2020) 055501. |
[32] | Y. Chen, C. Tang, J.Z. Jiang, Prog. Mater. Sci. 121 (2021) 100799. |
[33] |
Y.S. Oh, C.P. Kim, S. Lee, N.J. Kim, Acta Mater 59 (2011) 7277-7286.
DOI URL |
[34] |
Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen, D. Ma, X.L. Wang, Z.P. Lu, Acta Mater 59 (2011) 2928-2936.
DOI URL |
[35] |
P. Gargarella, S. Pauly, M. Samadi Khoshkhoo, U. Kühn, J. Eckert, Acta Mater 65 (2014) 259-269.
DOI URL |
[36] |
K.K. Song, S. Pauly, Y. Zhang, R. Li, S. Gorantla, N. Narayanan, U. Kühn, T. Gem-ming, J. Eckert, Acta Mater 60 (2012) 6000-6012.
DOI URL |
[37] |
B.A. Sun, K.K. Song, S. Pauly, P. Gargarella, J. Yi, G. Wang, C.T. Liu, J. Eckert, Y. Yang, Int. J. Plast. 85 (2016) 34-51.
DOI URL |
[38] |
S. Gouripriya, P. Tandaiya, Scr. Mater. 185 (2020) 1-6.
DOI URL |
[39] |
K.K. Song, S. Pauly, Y. Zhang, P. Gargarella, R. Li, N.S. Barekar, U. Kühn, M. Sto-ica, J. Eckert, Acta Mater 59 (2011) 6620-6630.
DOI URL |
[40] |
J.P. Kelly, S.M. Fuller, K. Seo, E. Novitskaya, V. Eliasson, A .M. Hodge, O.A. Graeve, Mater. Des. 93 (2016) 26-38.
DOI URL |
[41] | H. Ding, Z. Zhao, J. Jin, L. Deng, P. Gong, X. Wang, J. Alloys Compd. 850 (2021) 156724. |
[42] |
Y.-.K. Xu, H. Ma, J. Xu, E. Ma, Acta Mater 53 (2005) 1857-1866.
DOI URL |
[43] |
P. Gargarella, S. Pauly, K.K. Song, J. Hu, N.S. Barekar, M. Samadi Khoshkhoo, A. Teresiak, H. Wendrock, U. Kühn, C. Ruffing, E. Kerscher, J. Eckert, Acta Mater 61 (2013) 151-162.
DOI URL |
[44] |
S.H. Hong, J.T. Kim, H.J. Park, Y.S. Kim, J.Y. Suh, Y.S. Na, K.R. Lim, J.M. Park, K.B. Kim, Intermetallics 75 (2016) 1-7.
DOI URL |
[45] |
R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, T.C. Hufnagel, Acta Mater 53 (2005) 1883-1893.
DOI URL |
[46] |
Y. Wu, D. Ma, Q.K. Li, A.D. Stoica, W.L. Song, H. Wang, X.J. Liu, G.M. Stoica, G.Y. Wang, K. An, X.L. Wang, M. Li, Z.P. Lu, Acta Mater 124 (2017) 478-488.
DOI URL |
[47] |
H.C. Sun, Z.L. Ning, G. Wang, W.Z. Liang, S. Pauly, Y.J. Huang, S. Guo, X. Xue, J.F. Sun, Sci. Rep. 8 (2018) 4651.
DOI URL PMID |
[48] |
H. Sheng, L. Zhang, H. Zhang, J. Wang, J. Eckert, C. Gammer, Mater. Res. Lett. 9 (2021) 189-194.
DOI URL |
[49] |
A. Inoue, A. Takeuchi, Acta Mater 59 (2011) 2243-2267.
DOI URL |
[50] |
K. Otsuka, X. Ren, Prog. Mater. Sci. 50 (2005) 511-678.
DOI URL |
[51] |
Z.Y. Zeng, C.E. Hu, L.C. Cai, X.R. Chen, F.Q. Jing, Phys. B 405 (2010) 3665-3672.
DOI URL |
[52] | T. He, N. Ciftci, V. Uhlenwinkel, S. Scudino, J. Manuf. Mater. Process. 5 (2021) 23. |
[53] | A. Hammersley, S. Svensson, M. Hanfland, A. Fitch, D. Hausermann, Int. J. High Press. Res. 14 (1996) 235-248. |
[54] |
H.F. Poulsen, J.A. Wert, J. Neuefeind, V. Honkimäki, M. Daymond, Nat. Mater. 4 (2005) 33-36.
DOI URL |
[55] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[56] | M.I. Mendelev, D.J. Sordelet, M.J. Kramer, J. Appl. Phys. 102 (2007) 043501. |
[57] |
V.K. Sutrakar, D.R. Mahapatra, Mater. Lett. 63 (2009) 1289-1292.
DOI URL |
[58] | D. Rodney, A. Tanguy, D. Vandembroucq,Modell. Simul. Mater. Sci. Eng. 19 (2011) 083001. |
[59] |
S. Takeuchi, K. Edagawa, Prog. Mater. Sci. 56 (2011) 785-816.
DOI URL |
[60] |
K. Albe, Y. Ritter, D. ¸S opu, Mech. Mater. 67 (2013) 94-103.
DOI URL |
[61] | D. ¸S opu, A. Stukowski, M. Stoica, S. Scudino, Phys. Rev. Lett. 119 (2017) 195503. |
[62] |
J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91 (1987) 4950-4963.
DOI URL |
[63] | A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18 (2009) 015012. |
[64] |
T. He, O. Ertuğrul, N. Ciftci, V. Uhlenwinkel, K. Nielsch, S. Scudino, Mater. Sci. Eng. A 742 (2019) 517-525.
DOI URL |
[65] |
S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, J. Eckert, Acta Mater 57 (2009) 5445-5453.
DOI URL |
[66] |
K.K. Song, S. Pauly, B.A. Sun, Y. Zhang, J. Tan, U. Kühn, M. Stoica, J. Eckert, Intermetallics 30 (2012) 132-138.
DOI URL |
[67] | X. Fu, G. Wang, Y. Wu, W. Song, C.H. Shek, Y. Zhang, J. Shen, R.O. Ritchie, Int. J. Plast. 128 (2020) 102687. |
[68] | A.G. Metcalfe, Interfaces in Metal Matrix Composites: Composite Materials, El- sevier, 2016. |
[69] |
Q. Zhang, W. Zhang, A. Inoue, Scr. Mater. 55 (2006) 711-713.
DOI URL |
[70] | T. Clyne, P. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, 1995. |
[71] |
H.S. Kim, S.I. Hong, S.J. Kim, J. Mater. Process. Technol. 112 (2001) 109-113.
DOI URL |
[72] |
C.C. Swan, I. Kosaka, Int. J. Numer. Methods Eng. 40 (1997) 3033-3057.
DOI URL |
[73] | D.C. Lagoudas, Shape Memory alloys: Modeling and Engineering Applications, Springer, 2008. |
[74] |
A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R 74 (2013) 71-132.
DOI URL |
[75] |
S. Miyazaki, K. Otsuka, C. Wayman, Acta Metall 37 (1989) 1873-1884.
DOI URL |
[76] |
J.P. Hirth, G. Spanos, M.G. Hall, H.I. Aaronson, Acta Mater 46 (1998) 857-868.
DOI URL |
[77] |
A.S. Argon, Acta Metall 27 (1979) 47-58.
DOI URL |
[78] | K. Kosiba, S. Scudino, J. Bednarcik, J. Bian, G. Liu, U. Kühn, S. Pauly, Phys. Rev. B 102 (2020) 134113. |
[79] |
S. Scudino, D. ¸S opu, Nano Lett. 18 (2018) 1221-1227.
DOI URL PMID |
[80] |
S. Scudino, J. Alloys Compd. 773 (2019) 883-889.
DOI URL |
[1] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[2] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[3] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[4] | Hongcan Chen, Wei Xu, Qun Luo, Qian Li, Yu Zhang, Jingjing Wang, Kuo-Chih Chou. Thermodynamic prediction of martensitic transformation temperature in Fe-C-X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model [J]. J. Mater. Sci. Technol., 2022, 112(0): 291-300. |
[5] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[6] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[7] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
[8] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[9] | Yinghao Zhou, Xiyu Yao, Wenfei Lu, Dandan Liang, Xiaodi Liu, Ming Yan, Jun Shen. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 107(0): 124-135. |
[10] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[11] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[12] | Yunwei Pan, Anping Dong, Yang Zhou, Dafan Du, Donghong Wang, Guoliang Zhu, Baode Sun. Effects of V addition on the mechanical properties at elevated temperatures in a γ"-strengthened NiCoCr-based multi-component alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 290-300. |
[13] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[14] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[15] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||