J. Mater. Sci. Technol. ›› 2022, Vol. 112: 151-183.DOI: 10.1016/j.jmst.2021.11.004
• Research Article • Previous Articles Next Articles
Da-Hai Xiaa,b,*(), Cheng-Man Denga,b(
), Digby Macdonaldc(
), Sina Jamalid(
), Douglas Millse(
), Jing-Li Luof(
), Michael G. Streblg(
), Mehdi Amirih(
), Weixian Jini, Shizhe Songa,b, Wenbin Hua,b,*(
)
Received:
2021-09-20
Revised:
2021-11-06
Accepted:
2021-11-14
Published:
2021-12-16
Online:
2021-12-16
Contact:
Da-Hai Xia,Cheng-Man Deng,Digby Macdonald,Sina Jamali,Douglas Mills,Jing-Li Luo,Michael G. Strebl,Mehdi Amiri,Wenbin Hu
About author:
wbhu@tju.edu.cn (W.Hu).Da-Hai Xia, Cheng-Man Deng, Digby Macdonald, Sina Jamali, Douglas Mills, Jing-Li Luo, Michael G. Strebl, Mehdi Amiri, Weixian Jin, Shizhe Song, Wenbin Hu. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review[J]. J. Mater. Sci. Technol., 2022, 112: 151-183.
Measurement mode | Electrode system | Electrode system no. | Requirement of the area of the electrodes | |
---|---|---|---|---|
ZRA mode | Symmetrical electrode system | ![]() | #1 | SWE1=SWE2 |
![]() | #2 | SWE1=SWE2=SRE | ||
Asymmetrical electrode system | ![]() | #3 | SWE1≠SWE2 | |
![]() | #4 | SWE1≠SWE2 | ||
![]() | #5 | SWE1≠SCE | ||
![]() | #6 | SWE1=SWE2 | ||
Open circuit potential | ![]() | #7 | No requirement | |
Potentiostatic mode | ![]() | #8 | No requirement | |
Galvanostatic mode | ![]() | #9 | No requirement |
Table 1. Electrode systems used in EN measurement [43].
Measurement mode | Electrode system | Electrode system no. | Requirement of the area of the electrodes | |
---|---|---|---|---|
ZRA mode | Symmetrical electrode system | ![]() | #1 | SWE1=SWE2 |
![]() | #2 | SWE1=SWE2=SRE | ||
Asymmetrical electrode system | ![]() | #3 | SWE1≠SWE2 | |
![]() | #4 | SWE1≠SWE2 | ||
![]() | #5 | SWE1≠SCE | ||
![]() | #6 | SWE1=SWE2 | ||
Open circuit potential | ![]() | #7 | No requirement | |
Potentiostatic mode | ![]() | #8 | No requirement | |
Galvanostatic mode | ![]() | #9 | No requirement |
Fig. 1. (a) Working principle of the EFM test system (b) Signal acquisition for virtual instrument with DAQ 6036E and ZF-3 potentiostat (c) operating system in practice [82].
Virtual instrument | Conventional instrument |
---|---|
High development efficiency and short development cycle time | High development and maintenance costs and long development cycle time |
Short technology update cycle (1∼2 year) | Long technology update cycle (5∼10 year) |
Software is the key | Hardware is the key |
High cost performance, reusable and reconfigurable | Expensive |
User-defined instrument functions | Manufacturer-defined instrument functions |
Open, flexible, and can keep pace with the development of computer technology | Closed, fixed |
Can be connected with other devices through network, application-oriented instrument systems | Independent device with a single function and limited interconnection |
Table 2. Comparison between virtual instruments and conventional instruments.
Virtual instrument | Conventional instrument |
---|---|
High development efficiency and short development cycle time | High development and maintenance costs and long development cycle time |
Short technology update cycle (1∼2 year) | Long technology update cycle (5∼10 year) |
Software is the key | Hardware is the key |
High cost performance, reusable and reconfigurable | Expensive |
User-defined instrument functions | Manufacturer-defined instrument functions |
Open, flexible, and can keep pace with the development of computer technology | Closed, fixed |
Can be connected with other devices through network, application-oriented instrument systems | Independent device with a single function and limited interconnection |
Methods | Sensitivity range | Quantify uniform corrosion rate | Quantify Localized corrosion | Field monitoring use | Expected probe/sensor life | Ref. |
---|---|---|---|---|---|---|
OCP | No | No | Yes | Long | ||
Atmospheric corrosion monitor (ACM) | High | Yes | - | Yes | Depends on corrosion rate | [ |
EIS measured in the whole frequency range | High | Yes | no | Yes | Depends on corrosion rate | [ |
EIS measured at two frequency points | High | Yes | no | Yes | Depends on corrosion rate | [ |
Electrochemical noise | High | Yes | yes | Yes | Depends on corrosion rate | [ |
Linear polarization | High | Yes | no | Yes | Depends on corrosion rate | [ |
Table 3. Comparison of in-situ techniques for monitoring atmospheric corrosion.
Methods | Sensitivity range | Quantify uniform corrosion rate | Quantify Localized corrosion | Field monitoring use | Expected probe/sensor life | Ref. |
---|---|---|---|---|---|---|
OCP | No | No | Yes | Long | ||
Atmospheric corrosion monitor (ACM) | High | Yes | - | Yes | Depends on corrosion rate | [ |
EIS measured in the whole frequency range | High | Yes | no | Yes | Depends on corrosion rate | [ |
EIS measured at two frequency points | High | Yes | no | Yes | Depends on corrosion rate | [ |
Electrochemical noise | High | Yes | yes | Yes | Depends on corrosion rate | [ |
Linear polarization | High | Yes | no | Yes | Depends on corrosion rate | [ |
Schematic diagram of the probe/sensor | Electrode configuration | Distance between adjacent electrodes | Ref. | |
---|---|---|---|---|
Probe #1 | ![]() | Three nominally identical electrodes, RE is pseudo-one | 0.2 mm | [ |
Probe #2 | ![]() | All the electrodes are identical: AISI 1010 carbon steel with a thickness of 0.5 mm and a length of 25 mm, RE is pseudo-one | 1.5 mm | [ |
Probe #3 | ![]() | RE is a true one | 0.1 mm | [ |
Sensor #1 | ![]() | RE is a Zn electrodeCE is a platinum wire | Distance between WE and RE is ∼180 μm | [ |
Table 4. Electrochemical probes and sensors designed for EN measurement.
Schematic diagram of the probe/sensor | Electrode configuration | Distance between adjacent electrodes | Ref. | |
---|---|---|---|---|
Probe #1 | ![]() | Three nominally identical electrodes, RE is pseudo-one | 0.2 mm | [ |
Probe #2 | ![]() | All the electrodes are identical: AISI 1010 carbon steel with a thickness of 0.5 mm and a length of 25 mm, RE is pseudo-one | 1.5 mm | [ |
Probe #3 | ![]() | RE is a true one | 0.1 mm | [ |
Sensor #1 | ![]() | RE is a Zn electrodeCE is a platinum wire | Distance between WE and RE is ∼180 μm | [ |
Fig. 3. EN monitoring results of Q235B steel exposed to Tianjin urban atmosphere over 20 days. (a) potential noise; (b) current noise; (c) relative humidity; (d) temperature; (e) noise resistance; (f) ECN standard deviation; (g) EPN standard deviation. (Some data are lacking in Fig. 3 due to a power outage.) [87].
Schematic diagram | Electrode system | Distance between adjacent electrodes | Corrosion rate | Corrosion form | Refs. | |
---|---|---|---|---|---|---|
Probe #4 | ![]() | Screen-printed silver wire with a width of 1mm | 1 mm | sensitive | No | [ |
Probe #5 | ![]() | Two electrodes: Made of carbon steel or 316 L stainless steel plate | 0.2 mm | sensitive | No | [ |
Two electrodes: Made of Zn | 0.1 mm | sensitive | No | [ | ||
Al and Cu | 10 and 20 μm | sensitive | No | [ | ||
Probe #6 | ![]() | Two electrodes: Carbon steel plates | 0.1 mm | sensitive | No | [ |
Weathering steel | 0.12 mm | sensitive | No | [ | ||
Cu | 0.1 mm | sensitive | No | [ | ||
Probe #7 | ![]() | weathering steel | 0.5 mm | sensitive | No | [ |
Probe #8 | ![]() | RE and CE: pure zinc wiresWE: 304SS tube | 0.15 mm | sensitive | No | [ |
Probe #9 | ![]() | WE and CE: CuRE: SCE | 0.5 mm | sensitive | Yes | [ |
Zn, Zn,Ag(s)/AgCl(s) electrode in saturated KCl | 0.1 mm | sensitive | No | [ |
Table 5. Electrochemical sensors designed for EIS measurement.
Schematic diagram | Electrode system | Distance between adjacent electrodes | Corrosion rate | Corrosion form | Refs. | |
---|---|---|---|---|---|---|
Probe #4 | ![]() | Screen-printed silver wire with a width of 1mm | 1 mm | sensitive | No | [ |
Probe #5 | ![]() | Two electrodes: Made of carbon steel or 316 L stainless steel plate | 0.2 mm | sensitive | No | [ |
Two electrodes: Made of Zn | 0.1 mm | sensitive | No | [ | ||
Al and Cu | 10 and 20 μm | sensitive | No | [ | ||
Probe #6 | ![]() | Two electrodes: Carbon steel plates | 0.1 mm | sensitive | No | [ |
Weathering steel | 0.12 mm | sensitive | No | [ | ||
Cu | 0.1 mm | sensitive | No | [ | ||
Probe #7 | ![]() | weathering steel | 0.5 mm | sensitive | No | [ |
Probe #8 | ![]() | RE and CE: pure zinc wiresWE: 304SS tube | 0.15 mm | sensitive | No | [ |
Probe #9 | ![]() | WE and CE: CuRE: SCE | 0.5 mm | sensitive | Yes | [ |
Zn, Zn,Ag(s)/AgCl(s) electrode in saturated KCl | 0.1 mm | sensitive | No | [ |
RE | CE | Isolator or electrolyte | WE | Refs. | ||
---|---|---|---|---|---|---|
Sensor #2 | ![]() | SCE with a lugging capillary | 316 SS coiled wire of approximately 10 cm2 in surface area | Gel electrolyte | AISI 304 SS plate | [ |
Sensor #3 | ![]() | High purity zinc wire | Pt wire | Porous plastic film | Q235B and T91 steels | [ |
High purity antimony wire | stainless steel coated with thermal sprayed ceramic coatings | Filter paper with diameter of 5.5 cm | AISI 304 SS pipeline | [ | ||
Sensor #4 | ![]() | Ag/AgCl | stainless steel mesh | 0.3 M NaCl+5% agar | metallic cultural heritage | [ |
Sensor #5 | ![]() | Ag/AgCl in saturated NaCl solution | Pt wire | micro-capillaries | carbon steel | [ |
Sensor #6 | ![]() | - | Cu plate with a size of 150 × 100 × 1mm | wetted cloth 2.2 × 2.2 × 1mm | Cu plate with an area of 2 cm2 | [ |
Sensor #7 | ![]() | Cu pad | Cu pad | Filter paper soaked in 0.5 M NaCl | organic coating/metal system | [ |
Sensor #8 | ![]() | A saturated Ag/AgCl electrode | a Φ500 μm platinum wire | Glass capillary | 2205 duplex stainless steel | [ |
Table 6. Electrochemical probes and sensors designed for EIS measurement.
RE | CE | Isolator or electrolyte | WE | Refs. | ||
---|---|---|---|---|---|---|
Sensor #2 | ![]() | SCE with a lugging capillary | 316 SS coiled wire of approximately 10 cm2 in surface area | Gel electrolyte | AISI 304 SS plate | [ |
Sensor #3 | ![]() | High purity zinc wire | Pt wire | Porous plastic film | Q235B and T91 steels | [ |
High purity antimony wire | stainless steel coated with thermal sprayed ceramic coatings | Filter paper with diameter of 5.5 cm | AISI 304 SS pipeline | [ | ||
Sensor #4 | ![]() | Ag/AgCl | stainless steel mesh | 0.3 M NaCl+5% agar | metallic cultural heritage | [ |
Sensor #5 | ![]() | Ag/AgCl in saturated NaCl solution | Pt wire | micro-capillaries | carbon steel | [ |
Sensor #6 | ![]() | - | Cu plate with a size of 150 × 100 × 1mm | wetted cloth 2.2 × 2.2 × 1mm | Cu plate with an area of 2 cm2 | [ |
Sensor #7 | ![]() | Cu pad | Cu pad | Filter paper soaked in 0.5 M NaCl | organic coating/metal system | [ |
Sensor #8 | ![]() | A saturated Ag/AgCl electrode | a Φ500 μm platinum wire | Glass capillary | 2205 duplex stainless steel | [ |
Fig. 6. (a) Schematic of a closed chamber respirometric setup to monitor ORR and HER rates simultaneously with an optical O2 sensor and a combined sensor for pressure, temperature and relative humidity, adapted from Ref. [111]; (b) Promising experimental setup for field in situ measurements of ORR rates presented by Matthiesen [118], where a transparent chamber is glued to a bigger corroding structure; (c) Atmospheric corrosion real-time monitoring of HER, ORR and total corrosion rate of multiple NaCl contaminated Mg alloy AZ91 samples exposed to changing environmental conditions like RH, temperature and O2 partial pressure as determined with an intermittent-flow respirometric setup; (d) Respirometric monitoring of multiple NaCl contaminated 6000 series Al alloy samples during atmospheric exposure at elevated RH. Adapted from Ref. [111].
Fig. 7. Experimental set up for EN measurement using (a) salt bridge method, (b) single substrate, (c) no connection to substrate, and (d) single cell.
Fig. 8. Evolution of ENM application for remote site investigation via (a) modem/telephone line communication [38], (b, c) electric generators [24,34], and (d, e) portable EN analyser “ProCoMeter” [43].
Fig. 9. (a) Schematic diagram of electrode placement for EISPlus measurement; (b) belt-mounted EISPlus probe in pipe. A small magnet is used to make an electrical connection to the pipe where the coating has been stripped (adapted from [163]); (c) Testing the painting of a new bridge in the city of Gdynia (Poland) [166]; (d) Testing the painting of pier columns in the port of Gdansk (Poland) 1 year after painting [166].
Fig. 10. (a) the corrosion current density of Q235 carbon steel (#3) and Q235 ultrafine carbon steel (#7) was determined by using EFM (b) the corresponding temperature of the seawater in Zhoushan.
Fig. 11. Electrochemical monitoring the corrosion process of 4 steels in Zhoushan seawater during a 4 years’ immersion (Oct. 21, 2003~ Oct. 25, 2007) (a) the location of the specimens (b) electrode system used for corrosion potential and LPR measurements (c-f) corrosion morphology corresponding to immersion time of 59, 276, 1015 and 1457 d (g) temperature evolution during the immersion time (f) the change of corrosion potential as a function of immersion time (1) the change of polarization resistance as a function of immersion time. [175,176].
Fig. 12. Erosion-corrosion of 3C carbon steel in seawater in Zhoushan (a) the experimental setup for a field test (b) EIS results at various rotation speeds after immersion in seawater for 23 h [198].
Fig. 13. Schematic illustration of the erosion-corrosion sensor, (a) the 3D view of the sensitive and compensation elements, (b) the top and longitudinal section views of the sensitive element before and after erosion-corrosion and (c) the measurement circuit of the sensor system [205].
Fig. 14. Electrochemical sensor designed for corrosion monitoring for large metal structure [210] (a) the detected region was limited by a hole (b) the detected region was limited by “closed cell” design (c) “open cell” design, the current flow through the CE was limited by the CE having a limited exposed area.
Fig. 15. Corrosion rate detection based on potentiostatic step technique by using the sensor in Fig. 10a. (a) input potential signal (b) the current response curve [258].
Fig. 17. Four possible states of the coating on buried pipeline (a) intact coating (b) coating breakage (c) disbonding without breakdown (d) disbonding with breakdown (e) The analysis system of underground pipeline coating defects detection (the software was programmed in Tianjin University in 2003) [215].
Fig. 18. (a) Setup and working state of the grounding grid corrosion diagnosis system (b) structure of the apertural current limiting probe (c) Raw E-t curve and denoised E-t curve obtained from an in-field galvanostatic measurement (d) E-t curves obtained at position A, B and C in Anding substation [82].
Fig. 19. (a) structure profile of EN sensor used in high temperature steam [9] (b) field corrosion detection of carbon steel pipeline at high temperature (c) Zsn of carbon steel pipeline under different test conditions [9].
Standard deviation of EPN / mV | Standard deviation of ECN /nA | Noise resistance Rn/Ω | DC limit of Rsn(f), | |
---|---|---|---|---|
A | 0.478 | 2.86E-2 | 1.6682E7 | 5.615E7 |
B | 1.52 | 6.43 | 2.3637E5 | 4.777E6 |
C | 3.29 | 11.56 | 2.8442E5 | 1.731E6 |
D | 1.72 | 12.50 | 1.3763E5 | 1.423E6 |
E | 15.52 | 109.61 | 1.4160E5 | 7.202E6 |
F | 1.6 | 15.93 | 1.0043E5 | 1.294E5 |
G | 1.79 | 92.53 | 7.7702E4 | 7.378E4 |
Table 7. EN detection results showing the standard deviation of EPN and ECN as functions of temperatures and pressures (A:air;B:0.5Mpa, 153 °C;C:0.7 MPa, 168 °C;D:1 MPa, 181 °C;E:0.1Mpa increased to 1.6Mpa, 100 °C increased to 204 °C;F:1.8 MPa, 206 °C;G:2.4 MPa, 219 °C) [9].
Standard deviation of EPN / mV | Standard deviation of ECN /nA | Noise resistance Rn/Ω | DC limit of Rsn(f), | |
---|---|---|---|---|
A | 0.478 | 2.86E-2 | 1.6682E7 | 5.615E7 |
B | 1.52 | 6.43 | 2.3637E5 | 4.777E6 |
C | 3.29 | 11.56 | 2.8442E5 | 1.731E6 |
D | 1.72 | 12.50 | 1.3763E5 | 1.423E6 |
E | 15.52 | 109.61 | 1.4160E5 | 7.202E6 |
F | 1.6 | 15.93 | 1.0043E5 | 1.294E5 |
G | 1.79 | 92.53 | 7.7702E4 | 7.378E4 |
No. | Corrosion system | Electrochemical equivalent circuit | Impedance |
---|---|---|---|
EEC1 | Blocking electrode | ![]() | |
EEC2 | Blocking electrode (CPE) | ![]() | |
EEC3 | Corroding electrode | ![]() | |
EEC4 | Corroding electrode (CPE) | ![]() | |
EEC5 | Metal covered by organic coating | ![]() | |
EEC6 | Metal covered by organic coating (CPE) | ![]() | |
Table A.1. Some common electrochemical and corrosion systems and their electrochemical equivalent circuits (EECs).
No. | Corrosion system | Electrochemical equivalent circuit | Impedance |
---|---|---|---|
EEC1 | Blocking electrode | ![]() | |
EEC2 | Blocking electrode (CPE) | ![]() | |
EEC3 | Corroding electrode | ![]() | |
EEC4 | Corroding electrode (CPE) | ![]() | |
EEC5 | Metal covered by organic coating | ![]() | |
EEC6 | Metal covered by organic coating (CPE) | ![]() | |
[1] | L. Tao, S. Song, W. Jin, J. Chem. Ind. Eng. Soc. 60 (2) (2009) 153-158 http://hgxb.cip.com.cn/CN/Y2009/V60/I2/415 (accessed 17 December 2021). (in Chinese) |
[2] | S. Lee, Digital Color Image Processing System for Civil Infrastructure HealthAssessment and Monitoring: Steel Bridge Coating Case Ph.D. Thesis, PurdueUniversity, 2005. |
[3] |
F.M.V. Pereira, M.I.M.S. Bueno, Anal. Chim. Acta 588 (2007) 184-191.
DOI URL |
[4] |
H.-.K. Shen, P.-.H. Chen, L.-.M. Chang, Automat. Constr. 31 (2013) 338-356.
DOI URL |
[5] |
J. Kovacˇ, A. Legat, B. Zajec, T. Kosec, E. Govekar, Ultrasonics 62 (2015) 312-322.
DOI URL |
[6] |
A. Etiemble, H. Idrissi, L. Roue, Int. J. Hydrogen Energ. 38 (2013) 1136-1144.
DOI URL |
[7] |
J. Kovac, M. Leban, A. Legat, Electrochim. Acta 52 (2007) 7607-7616.
DOI URL |
[8] |
K. Wu, J.-.W. Byeon, Corros. Sci. 148 (2019) 331-337.
DOI URL |
[9] |
S.Z. Song, W.X. Zhao, J.H. Wang, J. Li, Z.M. Gao, D.H. Xia, Prot. Met. Phys. Chem. Surf. 54 (2018) 340-346.
DOI URL |
[10] |
E. Astafev, J. Solid State Electr. 23 (2019) 1705-1713.
DOI |
[11] |
E. Astafev, Rev. Sci. Instrum. 90 (2019) 025104.
DOI URL |
[12] |
E. Astafev, A. Ukshe, IEEE Trans. Instrum. Meas. 68 (2019) 4412-4418.
DOI URL |
[13] | U. Bertocci, F. Huet, B. Jaoul, P. Rousseau, Corrosion 56 (2000) 675-683. |
[14] | D.H. Xia, S.Z. Song, Y. Behnamian, Corros. Eng. Sci. Technol. 51 (2016) 527-544. |
[15] |
R. Cottis, A. Homborg, J. Mol, Electrochim. Acta 202 (2016) 277-287.
DOI URL |
[16] |
J. Sanchezamaya, R. Cottis, F. Botana, Corros. Sci. 47 (2005) 3280-3299.
DOI URL |
[17] |
D.-.H. Xia, Z. Qin, S. Song, D. Macdonald, J.-.L. Luo, Corros. Commun. 2 (2021) 1-8, doi: 10.1016/j.corcom.2021.09.001.
DOI URL |
[18] |
A. Kokalj, D. Costa, J. Electrochem. Soc. 168 (2021) 071508.
DOI URL |
[19] |
J. Hou, X.-.S. Kong, X. Wu, J. Song, C.S. Liu, Nat. Mater. 18 (2019) 833-839.
DOI URL |
[20] | N. Van den Steen, H. Simillion, O. Dolgikh, H. Terryn, J. Deconinck, Elec-trochim. Acta 187 (2016) 714-723. |
[21] |
I.S. Cole, T.H. Muster, N.S. Azmat, M.S. Venkatraman, A. Cook, Electrochim. Acta 56 (2011) 1856-1865.
DOI URL |
[22] |
Y.-y. Ji, Y.-z. Xu, B.-b. Zhang, Y. Behnamian, D.-h. Xia, W.-b. Hu, Trans. Nonferrous Met. Soc. China, 31(11) 2021 3205-3227. doi: 10.1016/S1003-6326(21)65727-8
DOI URL |
[23] |
G. Monrrabal, F. Huet, A. Bautista, Corros. Sci. 148 (2019) 48-56.
DOI |
[24] | J.M. Silva, R.P. Nogueira, L. de Miranda, F. Huet, J. Electrochem. Soc. 148 (2001) E241-E247. |
[25] | D.-.H. Xia, Y. Song, S. Song, Y. Behnamian, L. Xu, Z. Wu, Z. Qin, Z. Gao, W. Hu, Prog. Org. Coat. 126 (2019) 53-61. |
[26] | D.-.H. Xia, C. Ma, S. Song, L. Ma, J. Wang, Z. Gao, C. Zhong, W. Hu, Sens. Ac-tuators B: Chem. 252 (2017) 353-358. |
[27] |
D. Xia, S. Song, J. Li, W. Jin, Corros. Sci. Prot Technol 29 (5) (2017) 581-585 (in Chinese) (accessed 17 December 2021), doi: 10.11903/1002.6495.2016.246. (in Chinese)
DOI |
[28] |
D.-.H. Xia, J. Wang, Z. Wu, Z. Qin, L. Xu, W. Hu, Y. Behnamian, J.-.L. Luo, Sens. Actuators B: Chem. 280 (2019) 235-242.
DOI URL |
[29] | W. Nash, T. Drummond, N. Birbilis, NPJ. Mater.Degrad. 2 (2018) 37. |
[30] |
S. Jafarzadeh, Z. Chen, S. Li, F. Bobaru, Electrochim. Acta 323 (2019) 134795.
DOI URL |
[31] |
S. Wan, J. Hou, Z.-.F. Zhang, X.-x. Zhang, Z.-.H. Dong, Corros. Sci. 150 (2019) 246-257.
DOI URL |
[32] |
M. Komoda, I. Shitanda, Y. Hoshi, M. Itagaki, Electrochem. Commun. 103 (2019) 133-137.
DOI URL |
[33] |
I. Shitanda, T. Irisako, M. Itagaki, Sens. Actuators B: Chem. 160 (2011) 1606-1609.
DOI URL |
[34] |
M.W. Kendig, H. Leidheiser, J. Electrochem. Soc. 123 (1976) 982-989.
DOI URL |
[35] |
H. Leidheiser, Prog. Org. Coat. 7 (1979) 79-104.
DOI URL |
[36] |
M. Stern, A.L. Geary, J. Electrochem. Soc. 104 (1957) 56-63.
DOI URL |
[37] | M. Keddam, Corrosion 62 (2006) 1056-1066. |
[38] |
D.D. Macdonald, J. Electrochem. Soc. 125 (1978) 1443-1449.
DOI URL |
[39] | B. Syrett, D. Macdonald, Corrosion 35 (1979) 505-509. |
[40] | J. Qiu, D.D. Macdonald, Y. Xu, L. Sun, Mater. Corros. 72 (2021) 107-119. |
[41] | J. Ai, Y. Chen, M. Urquidi-Macdonald, D.D. Macdonald, J. Electrochem. Soc. 154 (2007) C43-C51. |
[42] | J. Ai, Y. Chen, M. Urquidi-Macdonald, D.D. Macdonald, J. Electrochem. Soc. 154 (2007) C52-C59. |
[43] | D.-.H. Xia, S. Song, Y. Behnamian, W. Hu, Y.F. Cheng J.-. L. Luo, F. Huet, J. Elec-trochem. Soc. 167 (2020) 081507. |
[44] | R.A. Cottis, Corrosion 57 (2001) 265-285. |
[45] |
D.-.H. Xia, Y. Behnamian, Russ. J. Electrochem. 51 (2015) 593-601.
DOI URL |
[46] | A.M. Homborg, T. Tinga, E.P.M. van Westing, X. Zhang, G.M. Ferrari, J.H.W. de Wit, J.M.C. Mol, Corrosion 70 (2014) 971-987. |
[47] |
J.F. Chen, W.F. Bogaerts, Corros. Sci. 37 (1995) 1839-1842.
DOI URL |
[48] | J.F. Chen, W.F. Bogaerts, Corrosion 52 (1996) 753-759. |
[49] | J. Bockris, A. Reddy, Modern Electrochemistry, 2nd ed., Kluwer Aca-demic/Plenum Publishers, New York, 2000. |
[50] | M.T. Smith, D.D. Macdonald, CORROSION 2005, NACE International, 2005. |
[51] |
D.D. Macdonald, Electrochim. Acta 51 (2006) 1376-1388.
DOI URL |
[52] |
D.D. Macdonald, M. Urquidi-Macdonald, J. Electrochem. Soc. 132 (1985) 2316-2319.
DOI URL |
[53] |
M. Urquidi-Macdonald, S. Real, D.D. Macdonald, J. Electrochem. Soc. 133 (1986) 2018-2024.
DOI URL |
[54] |
M. Urquidi-Macdonald, S. Real, D.D. Macdonald, Electrochim. Acta 35 (1990) 1559-1566.
DOI URL |
[55] | M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, 2nd ed., John Wiley & Sons, Inc, Hoboken, 2017. |
[56] |
S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, M.E. Orazem, Nature Reviews Methods Primers 1 (2021) 41.
DOI URL |
[57] | ISO/TR 16208: 2014 Corrosion of metals and alloys —Test method for corro-sion of materials by electrochemical impedance measurements. |
[58] | ISO 16773-1: 2016 Electrochemical impedance spectroscopy (EIS) on coated and uncoated metallic specimens — Part 1: terms and definitions. |
[59] | ISO 16773-2: 2016 Electrochemical impedance spectroscopy (EIS) on coated and uncoated metallic specimens — Part 2: collection of data. |
[60] | ISO 16773-3: 2016 Electrochemical impedance spectroscopy (EIS) on coated and uncoated metallic specimens — Part 3: processing and analysis of data from dummy cells. |
[61] | ISO 16773-4: 2017 Electrochemical impedance spectroscopy (EIS) on coated and uncoated metallic specimens — Part 4: examples of spectra of polymer-coated and uncoated specimens. |
[62] | C. Pan, X. Wang, Y. Behnamian, Z. Wu, Z. Qin, D.-.H. Xia, W. Hu, J. Elec-trochem. Soc. 167 (2020) 161510. |
[63] | D.-.H. Xia, C. Pan, Z. Qin, B. Fan, S. Song, W. Jin, W. Hu, Prog. Org. Coat. 143 (2020) 105638. |
[64] |
J. Kittel, N. Celati, M. Keddam, H. Takenouti, Prog. Org. Coat. 41 (2001) 93-98.
DOI URL |
[65] | G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Elec-troanal. Chem. Interfac. Electrochem. 176 (1984) 275-295. |
[66] | B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Elec-trochim. Acta 55 (2010) 6218-6227. |
[67] | S. Amand, M. Musiani, M.E. Orazem, N. Pébère, B. Tribollet, V. Vivier, Elec-trochim. Acta 87 (2013) 693-700. |
[68] | M.E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A.L. Bunge, E.A. White, D.P. Riemer, M. Musiani, J. Electrochem. Soc. 160 (2013) C215-C225. |
[69] |
D.D. Macdonald, M. Urquidi-Macdonald, J. Electrochem. Soc. 137 (1990) 515-517.
DOI URL |
[70] |
J.M. Sanchez-Amaya, R.M. Osuna, M. Bethencourt, F.J. Botana, Prog. Org. Coat. 60 (2007) 248-254.
DOI URL |
[71] | S. Martinez, I. Šoić, V. Špada, Prog. Org. Coat. 153 (2021) 106155. |
[72] | P. Wambacq, W.M.C. Sansen, Distortion Analysis of Analog Integrated Circuits, Springer, Boston, MA, 1998. |
[73] |
I.B. Obot, I.B. Onyeachu, J. Mol. Liq. 249 (2018) 83-96.
DOI URL |
[74] | R.W. Bosch, J. Hubrecht, W.F. Bogaerts, B.C. Syrett, Corrosion 57 (2001) 60-70. |
[75] | D.A. Eden, CORROSION 2005, NACE International, April 2005. |
[76] |
G. Prabhakara Rao, A.K. Mishra, J Electroanal Chem Interfacial Electrochem 77 (1977) 121-125.
DOI URL |
[77] | U. Bertocci, Corrosion 35 (1979) 211-215. |
[78] | R.W. Bosch, W.F. Bogaerts, Corrosion 52 (1996) 204-212. |
[79] | R.W. Bosch, W.F. Bogaerts, Apparatus and method for electrochemical corro-sion monitoring. US Patent, No. US20000546728 2001. |
[80] |
S.S. Abdel-Rehim, K.F. Khaled, N.S. Abd-Elshafi, Electrochim. Acta 51 (2006) 3269-3277.
DOI URL |
[81] |
E. Kuş, F. Mansfeld, Corros. Sci. 48 (2006) 965-979.
DOI URL |
[82] | L. Han, Virtual Instrumentation Technology in Electrochemical Corrosion Measurement. 2007, Ph.D. Thesis, Tianjin University 2007, (in Chinese) |
[83] | S. Song, in: Research Technology of Corosion Electrochemistry, Chemical In-dustry Press, Beijing, 1988, p. 16. (in Chinese) |
[84] | Y.-.C. Wang, M. Su, D.-.H. Xia, Z. Wu, Z. Qin, L. Xu, H.-.Q. Fan, W. Hu, Mea-surement 134 (2019) 500-508. |
[85] |
C. Ma, Z. Wang, Y. Behnamian, Z. Gao, Z. Wu, Z. Qin, D.-.H. Xia, Measurement 138 (2019) 54-79.
DOI URL |
[86] | D.-.H. Xia, S. Song, Z. Qin, W. Hu, Y. Behnamian, J. Electrochem. Soc. 167 (2020) 037513. |
[87] |
C. Ma, S. Song, Z. Gao, J. Wang, W. Hu, Y. Behnamian, D.-.H. Xia, Corros. Eng. Sci. Technol. 52 (6) (2017) 432-440, doi: 10.1080/1478422X.2017.1320117.
DOI |
[88] |
U. Bertocci, C. Gabrielli, F. Huet, M. Keddam, J. Electrochem. Soc. 144 (1997) 31-37.
DOI URL |
[89] |
U. Bertocci, C. Gabrielli, F. Huet, M. Keddam, P. Rousseau, J. Electrochem. Soc. 144 (1997) 37-43.
DOI URL |
[90] |
R.-.W. Bosch, R.A. Cottis, K. Csecs, T. Dorsch, L. Dunbar, A. Heyn, F. Huet, O. Hyökyvirta, Z. Kerner, A. Kobzova, J. Macak, R. Novotny, J. Öijerholm, J. Piippo, R. Richner, S. Ritter, J.M. Sánchez-Amaya, A. Somogyi, S. Väisänen, W. Zhang, Electrochim. Acta 120 (2014) 379-389.
DOI URL |
[91] |
I.N. Bastos, F. Huet, R.P. Nogueira, P. Rousseau, J. Electrochem. Soc. 147 (2000) 671-677.
DOI URL |
[92] | F. Huet, K. Ngo, Corrosion 75 (2019) 1065-1073. |
[93] | F. Huet, S. Ritter, Corrosion 74 (2018) 1457-1465. |
[94] |
I. Shitanda, A. Okumura, M. Itagaki, K. Watanabe, Y. Asano, Sens. Actuators B: Chem. 139 (2009) 292-297.
DOI URL |
[95] |
E. Cano, A. Crespo, D. Lafuente, B.Ramirez Barat, Electrochem. Commun. 41 (2014) 16-19.
DOI URL |
[96] | S. Li, L.H. Hihara, J. Electrochem. Soc. 159 (2012) C461-C468. |
[97] |
E. García-Ochoa, J. González-Sánchez, F. Corvo, Z. Usagawa, L. Dzib-Pérez, A. Castañeda, J. Appl. Electrochem. 38 (2008) 1363-1368.
DOI URL |
[98] |
S.S. Jamali, Y. Zhao, Z. Gao, H. Li, A.C. Hee, J. Ind. Eng. Chem. 43 (2016) 36-43.
DOI URL |
[99] |
S.-.Z. Song, W.-.X. Zhao, J.-.H. Wang, J. Li, Z.-.M. Gao, D.-.H. Xia, Prot. Met. Phys. Chem. Surf. 54 (2018) 340-346.
DOI URL |
[100] |
Y. Jin, Z. Lai, P. Bi, S. Yan, L. Wen, Y. Wang, J. Pan, C. Leygraf, Electrochem. Commun. 87 (2018) 53-57.
DOI URL |
[101] | P. Khullar, J.V. Badilla, R.G. Kelly, ECS Electrochem. Lett. 4 (2015) C31-C33. |
[102] | Y. Shi, E. Tada, A. Nishikata, J. Electrochem. Soc. 162 (2015) C135-C139. |
[103] |
A. Nishikata, F. Suzuki, T. Tsuru, Corros. Sci. 47 (2005) 2578-2588.
DOI URL |
[104] |
A. Nishikata, Q. Zhu, E. Tada, Corros. Sci. 87 (2014) 80-88.
DOI URL |
[105] | Y. Liu, Z. Wang, B. Wang, Y. Cao, Y. Huo, J.Chin Kewei, Soc. Corros. Prot. 37 (2017) 261-266. (in Chinese) |
[106] |
E. Schindelholz, R.G. Kelly, I.S. Cole, W.D. Ganther, T.H. Muster, Corros. Sci. 67 (2013) 233-241.
DOI URL |
[107] | E. Schindelholz, R.G. Kelly, Corros. Rev. 30 (2012) 135-170. |
[108] |
D. Mizuno, S. Suzuki, S. Fujita, N. Hara, Corros. Sci. 83 (2014) 217-225.
DOI URL |
[109] | C. Liu, J. Srinivasan, R.G. Kelly, J. Electrochem. Soc. 164 (2017) C845-C855. |
[110] | N. Fuse, A. Naganuma, T. Fukuchi, J.-i. Tani, Y. Hori, Corrosion 73 (2017) 199-209. |
[111] |
M. Strebl, M. Bruns, S. Virtanen, J. Electrochem. Soc. 167 (2020) 021510.
DOI URL |
[112] |
M.G. Strebl, M.P. Bruns, G. Schulze, S. Virtanen, J. Electrochem. Soc. 168 (2021) 011502.
DOI URL |
[113] | R.J. Winsley, N.R. Smart, A.P. Rance, P.A.H. Fennell, B. Reddy, B. Kursten, Cor-ros. Eng. Sci. Technol. 46 (2011) 111-116. |
[114] | S. Thomas, N. Ott, R.F. Schaller, J.A. Yuwono, P. Volovitch, G. Sundararajan, N. V. Medhekar, K. Ogle, J.R. Scully, N. Birbilis, Heliyon 2 (2016) e00209. |
[115] | S. Thomas, G. Sundararajan, P.D. White, N. Birbilis, Corrosion 73 (2017) 426-436. |
[116] |
M. Stratmann, K. Bohnenkamp, T. Ramchandran, Corros. Sci. 27 (1987) 905-926.
DOI URL |
[117] | H.S. Wroblowa, P. Yen Chi, G. Razumney, J Electroanal Chem Interfacial Elec-trochem 69 (1976) 195-201. |
[118] |
H. Matthiesen, Stud. Conserv. 52 (2007) 271-280.
DOI URL |
[119] |
J.R.B. Lighton, L.G. Halsey, Comp. Biochem. Phys. A 158 (2011) 265-275.
DOI URL |
[120] |
H.A.A. Al-Mazeedi, R.A. Cottis, Electrochim. Acta 49 (2004) 2787-2793.
DOI URL |
[121] |
Y.J. Tan, Sens. Actuators B: Chem. 139 (2009) 688-698.
DOI URL |
[122] |
Y.F. Cheng, M. Wilmott, J.L. Luo, Appl. Surf. Sci. 152 (1999) 161-168.
DOI URL |
[123] |
R.A. Cottis, M.A.A. Al-Awadhi, H. Al-Mazeedi, S. Turgoose, Electrochim. Acta 46 (2001) 3665-3674.
DOI URL |
[124] |
J.M. Sanchez-Amaya, R.A. Cottis, F.J. Botana, Corros. Sci. 47 (2005) 3280-3299.
DOI URL |
[125] |
A.M. Homborg, T. Tinga, X. Zhang, E.P.M. van Westing, P.J. Oonincx, G.M. Fer-rari, J.H.W. de Wit, J.M.C. Mol, Electrochim. Acta 104 (2013) 84-93.
DOI URL |
[126] | S.S. Jamali, D.J. Mills, R.A. Cottis, in: S. Touzain (Ed.), Appl. Electrochem. Tech. to Org. Coatings, European Federation of Corrosion, La Rochelle, France, 2015. |
[127] |
B.S. Skerry, D.A. Eden, Prog. Org. Coat. 19 (1991) 379-396.
DOI URL |
[128] | S.S. Jamali, D.J. Mills, R.A. Cottis, T.Y. Lan, Prog. Org. Coat. 96 (2016) 52-57. |
[129] |
S.J. Mabbutt, D.J. Mills, British Corrosion J 33 (1998) 158-160.
DOI URL |
[130] |
S.J. Mabbutt, G.P. Bierwagen, D.J. Mills, Anti-Corros. Method. M. 49 (2002) 264-269.
DOI URL |
[131] |
S. Mabbutt, D.J. Mills, C.P. Woodcock, Prog. Org. Coat. 59 (2007) 192-196.
DOI URL |
[132] | S.S. Jamali, D.J. Mills, J.M. Sykes, Prog. Org. Coat. 77 (2014) 733-741. |
[133] | S.S. Jamali, D.J. Mills, Prog. Org. Coat. 95 (2016) 26-37. |
[134] |
J. Lv, Q.-x. Yue, R. Ding, X. Wang, T.-j. Gui, X.-d. Zhao, Chemelectrochem 8 (2021) 337-351.
DOI URL |
[135] | D.J. Mills, S.J. Mabbutt, 7th Int. Symp. Electrochem. Methods Corros. Res., 2000 p. paper no. 145. |
[136] | S. Mabbutt, D.J. Mills, Surf. Coat. Int. PT B-C. 84 (2001) 277-283. |
[137] |
T. Jurak, S.S. Jamali, Y. Zhao, Electrochim. Acta 301 (2019) 377-389.
DOI URL |
[138] | C.P. Woodcock, D.J. Mills, H.T. Singh, J. Corros. Sci. Eng. 8 (2004) 1-10. |
[139] | D.J. Mills, J. Corros. Sci. Eng. 8 (2004) 12. |
[140] |
S. Jamali, D.J. Mills, C. Woodcock, ECS Trans 24 (2019) 115-125.
DOI URL |
[141] |
D. Mills, P. Picton, L. Mularczyk, Electrochim. Acta 124 (2014) 199-205.
DOI URL |
[142] | M. Halama, D. Jerolitsch, P. Linhardt, G. Fafilek, “Corrosion from Nanoscale to Plant” Eurocorr 2009, 2009. |
[143] |
M. Halama, J. Tká, O. Monbaliu, Y. Zhu, Mater. Sci. Forum 811 (2014) 3-10.
DOI URL |
[144] | M. Halama, Z. Ying, K. Kova, J. Brezinová, Acta Metall. Slovaca 20 (2014) 89-96. |
[145] | D.-.H. Xia, Y. Song, S. Song, Y. Behnamian, L. Xu, Z. Wu, Z. Qin, Z. Gao, W. Hu, Prog. Org. Coat. 126 (2019) 53-61. |
[146] |
X.F. Yang, J. Li, S.G. Croll, D.E. Tallman, G.P. Bierwagen, Polym. Degrad. Stabil. 80 (2003) 51-58.
DOI URL |
[147] |
Q. Su, K. Allahar, G. Bierwagen, Electrochim. Acta 53 (2008) 2825-2830.
DOI URL |
[148] |
V. Upadhyay, K.N. Allahar, G.P. Bierwagen, Sens. Actuators B: Chem. 193 (2014) 522-529.
DOI URL |
[149] | K.N. Allahar, D. Wang, D. Battocchi, G.P. Bierwagen, S. Balbyshev, Corrosion 66 (2010). |
[150] |
G.P. Bierwagen, K.N. Allahar, Q. Su, V.J. Gelling, Corros. Sci. 51 (2009) 95-101.
DOI URL |
[151] | K.N. Allahar, Q. Su, G.P. Bierwagen, D.H. Lee, Corrosion 64 (2008) 773-787. |
[152] |
S.S. Jamali, D. Mills, Electrochim. Acta 398 (2021) 139279.
DOI URL |
[153] | R.L. Ruedisueli, J.N. Murray, CORROSION 2004, 2004. |
[154] | J.N. Murray, R. Ruedisueli, CORROSION 20 05, NACE International, 2005. |
[155] |
D.J. Mills, M. Broster, I. Razaq, Prog. Org. Coat. 63 (2008) 267-271.
DOI URL |
[156] |
F. Mansfeld, H. Xiao, L.T. Han, C.C. Lee, Prog. Org. Coat. 30 (1997) 89-100.
DOI URL |
[157] |
F. Mansfeld, L.T. Han, C.C. Lee, G. Zhang, Electrochim. Acta 43 (1998) 2933-2945.
DOI URL |
[158] | S. Leeds, D.J. Mills, K. Schaefer, T. Lan, in: CeoCor, UK Institute of Corrosion, Stratford-upon-Avon, UK, 2018, pp. 1-12. |
[159] | D.J. Mills, K. Schaefer, T. Lan, T. Wityk, in: in: EuroCorr, European Federation of Corrosion, Kracow, Poland, 2018, 2018, pp. 1-12. |
[160] | M.T. Woldemedhin, C. Lee, B. Skerry, D.J. Mills, CORROS. 2018 NACE Int. Cor-ros. Conf. Ser., NACE International, 2018. |
[161] | B. Merten, E. Monblatt, in: Field Electrochemical Noise Measurement to Assess Coatings For Corrosion Protection, U.S. Department of the In-terior, Bureau of Reclamation, 2019, pp. 1-40. Final Research Report: ST-2019-19308-01. |
[162] |
F. Meng, L. Liu, Y. Cui, F. Wang, J. Mater. Sci. Technol. 64 (2021) 165-175.
DOI URL |
[163] | J. Been, L. Yang, F. King, R.G. Worthingham, CORROSION 2005, NACE Interna-tional, 2005. |
[164] | A. Miszczyk, K. Darowicki, Z. Klenowicz, Corrosion 53 (1997) 572-580. |
[165] | A. Miszczyk, K. Darowicki, Pol. J. Environ. Stud. 11 (2002) 205-209. |
[166] | A. Miszczyk (Poland), private communication. |
[167] |
J. Bordziłowski, A Królikowska, P.L. Bonora, I. Maconi, A. Sollich, Prog. Org. Coat. 67 (2010) 414-419.
DOI URL |
[168] | X. Qi, B. Hinderliter, V.J. Gelling, Corrosion 65 (2009) 343-349. |
[169] | X. Qi, B. Hinderliter, V.J. Gelling, Corrosion 66 (2010) 0250 02-0250 02-10. |
[170] |
R.E. Melchers, Corros. Sci. 45 (2003) 923-940.
DOI URL |
[171] |
R.E. Melchers, Corros. Sci. 46 (2004) 1669-1691.
DOI URL |
[172] |
R.E. Melchers, R. Jeffrey, Corros. Sci. 47 (2005) 1678-1693.
DOI URL |
[173] |
R.E. Melchers, Corros. Sci. 45 (2003) 2609-2625.
DOI URL |
[174] | L. Han, S. Song, J. Chem. Ind. Eng. 59 (2008) 977-981. (in Chinese) |
[175] | S. Song, Y. Luo, W. Jin, L. Yin, J. Chin. Soc. Corros. Prot. 27 (6) (2007) 321-325 https://www.jcscp.org/CN/Y2007/V27/I6/321. (in Chinese) |
[176] | Y. Luo, S. Song, W. Jin, L. Yin, J. Chem. Ind. Eng. 59 (11) (2008) 2864-2869 http://hgxb.cip.com.cn/CN/Y2008/V59/I11/2864. (in Chinese) |
[177] |
R.J.K. Wood, Wear 261 (2006) 1012-1023.
DOI URL |
[178] |
Y.Z. Xu, Q. Zhou, L. Liu, Q. Zhang, S. Song, Y. Huang, Corros. Eng. Sci. Technol. 55 (2020) 1-10.
DOI URL |
[179] |
Z.B. Zheng, Y.G. Zheng, Corros. Sci. 102 (2016) 259-268.
DOI URL |
[180] |
Y. Xu, M.Y. Tan, Corros. Sci. 139 (2018) 438-443.
DOI URL |
[181] |
L.L. Li, Z.B. Wang, S.Y. He, Y.G. Zheng, J. Mater. Sci. Technol. 89 (2021) 158-166.
DOI |
[182] | L. Liu, Y. Xu, C. Xu, X. Wang, Y. Huang, Wear 428-429 (2019) 328-339. |
[183] |
H.X. Guo, B.T. Lu, J.L. Luo, Electrochim. Acta 51 (2006) 5341-5348.
DOI URL |
[184] |
H.X. Guo, B.T. Lu, J.L. Luo, Electrochim. Acta 51 (2005) 315-323.
DOI URL |
[185] |
Y. Xu, M.Y. Tan, Corros. Sci. 151 (2019) 163-174.
DOI URL |
[186] |
Y.I. Oka, K. Okamura, T. Yoshida, Wear 259 (2005) 95-101.
DOI URL |
[187] |
Y. Xu, L. Liu, C. Xu, X. Wang, M.Y. Tan, Y. Huang, J. Solid State Electr. 24 (2020) 2511-2524.
DOI URL |
[188] |
Y. Xu, L. Liu, Q. Zhou, X. Wang, M.Y. Tan, Y. Huang, Metals (Basel) 10 (2020) 180.
DOI URL |
[189] |
J. Xie, A. Alpas, D. Northwood, J. Mat. Sci. 38 (2003) 4849-4856.
DOI URL |
[190] | M.A. Islam, Z. Farhat, Wear 376-377 (2017) 533-541. |
[191] |
Y. Tan, Corros. Sci. 53 (2011) 1845-1864.
DOI URL |
[192] | Y. Xu, Q. Zhang, S. Gao, X. Wang, Y. Huang, Wear 478-479 (2021) 203907. |
[193] | Y. Xu, L. Liu, Q. Zhou, X. Wang, Y. Huang, Wear 442-443 (2020) 203151. |
[194] | G.J. Bignold, K. Garbett, R. Garnsey, I.S. Woolsey, British Nuclear Energy Soci-ety, pp. 5-18. |
[195] | I.S. Woolsey, Erosion-corrosion in PWR secondary circuits, CERL Rep. TPRD/L/3114/R87 (1987). |
[196] |
D. Cubicciotti, J. Nucl. Mater. 152 (1988) 259-264.
DOI URL |
[197] |
R. Malka. S. Nešic´, D.A. Gulino, Wear 262 (2007) 791-799.
DOI URL |
[198] | W. Jin, Y. Luo, S. Song, J. Chin. Soc. Corros. Prot. 28 (6) (2008) 337-340. (in Chinese) |
[199] |
P. Zhang, S. Zheng, J. Jing, Y. Zhou, Q. Li, K. Wang, N. Lv, N. Sun, J. Nat. Gas Sci. Eng. 26 (2015) 480-493.
DOI URL |
[200] |
J.I. Ukpai, R. Barker, X. Hu, A. Neville, Wear 301 (2013) 370-382.
DOI URL |
[201] | Y.Z. Xu, Y.S. Zhu, L. Liu, L.M. He, X.N. Wang, Y. Huang, Mater. Corros. 68 (2017) 632-644. |
[202] | Y. Zhu, Y. Xu, S. Song, X. Wang, G. Liu, Y. Huang, Mater. Corros. 71 (2020) 1386-1399. |
[203] |
Y. Zhu, Y. Xu, K. Li, X. Wang, G. Liu, Y. Huang, Measurement 138 (2019) 8-24.
DOI URL |
[204] |
Y. Xu, Y. Huang, X. Wang, X. Lin, Sens. Actuators B: Chem. 224 (2016) 37-47.
DOI URL |
[205] |
L. Liu, Y. Xu, Z. Wang, G. Li, X. Wang, Y. Huang, Measurement 183 (2021) 109797.
DOI URL |
[206] |
Y. Zhu, Y. Xu, M. Wang, X. Wang, G. Liu, Y. Huang, Ocean Eng. 189 (2019) 106351.
DOI URL |
[207] |
L. Liu, Y. Xu, Y. Zhu, X. Wang, Y. Huang, J. Electrochem. Soc. 167 (2020) 141510.
DOI URL |
[208] |
L. Zeng, G.A. Zhang, X.P. Guo, Corros. Sci. 85 (2014) 318-330.
DOI URL |
[209] |
L. Zeng, G.A. Zhang, X.P. Guo, C.W. Chai, Corros. Sci. 90 (2015) 202-215.
DOI URL |
[210] | S. Li, Development and Applications of Improved Electrochemical Corrosion sensor in Aquatic Environment, B.S. Thesis, Tianjin University, 2008. |
[211] | F. Meng, L. Liu, Y. Li, F. Wang, Prog. Org. Coat. 105 (2017) 81-91. |
[212] | F. Meng, L. Liu, Y. Cui, T. Zhang, Y. Li, F. Wang, Prog. Org. Coat. 131 (2019) 346-356. |
[213] |
F. Meng, Y. Liu, L. Liu, Y. Cui, F. Wang, Coatings 9 (2019) 852.
DOI URL |
[214] | A. Chang, Electrochemical detection of the sea metal construction simulation corrosion test device. Ph.D. Thesis, Tianjin University, 2010. |
[215] | Z. Gao, The application of wavelet analysis and neural networks in the study on coating detection and degradation. Ph.D. Thesis, Tianjin University, 2002. |
[216] | X. Song, Study on electrochemical detection technique for protective coating of buried pipeline, Ph.D. Thesis, Tianjin University, 2000. |
[217] | J. Titz, G.H. Wagner, H. Spähn, M. Ebert, K. Jüttner, W.J. Lorenz, Corrosion 46 (1990) 221-229. |
[218] |
D.H. Xia, S.Z. Song, J.H. Wang, H.C. Bi, Z.W. Han, Trans. Tianjin Univ. 18 (2012) 15-20.
DOI URL |
[219] |
J.A. Guemes, F.E. Hernando, IEEE T. Power Deliver. 19 (2004) 595-600.
DOI URL |
[220] |
J.G. Sverak, IEEE T. Power Deliver 13 (1998) 762-767.
DOI URL |
[221] |
F.P. Dawalibi, J. Ma, R.D. Southey, IEEE T. Power Deliver 9 (1994) 334-342.
DOI URL |
[222] | D.D. Macdonald, Powerplant Chem. J. All Power Plant Chem. Areas 15 (2013) 400-443. |
[223] | D.D. Macdonald, in: Su-l Pyun, J-N. Lee (Eds.), Progress in Corrosion Science and Engineering II, Springer, Boston, MA, 2012, 1-182. |
[224] |
Y. Li, D.D. Macdonald, J. Yang, J. Qiu, S. Wang, Corros. Sci. 163 (2020) 108280.
DOI URL |
[225] |
D.D. Macdonald, A.C. Scott, P. Wentrcek, J. Electrochem. Soc. 126 (1979) 908-911.
DOI URL |
[226] |
S.N. Lvov, D.D. Macdonald, J. Electroanal. Chem. 403 (1996) 25-30.
DOI URL |
[227] |
S.N. Lvov, X.Y. Zhou, G.C. Ulmer, H.L. Barnes, D.D. Macdonald, S.M. Ulyanov, L. G. Benning, D.E. Grandstaff, M. Manna, E. Vicenzi, Chem. Geol. 198 (2003) 141-162.
DOI URL |
[228] | S. Hettiarachchi, K. Makela, H. Song, D.D. Macdonald, J. Electrochem. Soc. 139 (1992) L3-L4. |
[229] |
L.B. Kriksunov, D.D. Macdonald, P.J. Millett, J. Electrochem. Soc. 141 (1994) 3002-3005.
DOI URL |
[230] | A.W. Apblett, M.T. Ley, N.F. Materer, Embedded Wireless Corrosion Sensor, US Patent, No. 20120007579, 2012. |
[231] | M. Alamin, Passive Low Frequency RFID For Detection and Monitoring of Cor-rosion Under Paint and Insulation, Newcastle University, 2013 Ph.D. Thesis. |
[232] | Y. He, Corrosion 76 (2020) 411-423. |
[233] |
Y.L. He, S. McLaughlin, J.S.H. Lo, C. Shi, J. Lenos, A. Vincelli, Corros. Eng. Sci. Technol. 50 (2015) 63-71.
DOI URL |
[234] |
Y.L. He, S. McLaughlin, J.S.H. Lo, C. Shi, J. Lenos, A. Vincelli, Corros. Eng. Sci. Technol. 49 (2014) 695-704.
DOI URL |
[235] |
G. Qiao, G. Sun, Y. Hong, T. Liu, X. Guan, Sensors 14 (2014) 3395-3407.
DOI URL |
[236] |
G. Sun, G. Qiao, B. Xu, IEEE Sens. J. 11 (2011) 1476-1477.
DOI URL |
[237] |
Y. Yu, G. Qiao, J. Ou, IEEE Sens. J. 10 (2010) 1901-1902.
DOI URL |
[238] |
A. Miszczyk, K. Darowicki, Corros. Sci. 64 (2012) 234-242.
DOI URL |
[239] |
W.C. Nickerson, N. Iyyer, K. Legg, M. Amiri, Corros. Rev. 35 (2017) 205-223.
DOI URL |
[240] |
W.C. Nickerson, M. Amiri, N. Iyyer, Corros. Rev. 37 (2019) 367-375.
DOI |
[241] |
F. Mansfeld, J. Kenkel, Corros. Sci. 16 (1976) 111-122.
DOI URL |
[242] | N. Fuse, Y. Shumuta, A. Naganuma, J.-i. Tani, Y. Hori, Corrosion 75 (2019) 839-847. |
[243] |
C. Li, Y. Ma, Y. Li, F. Wang, Corros. Sci. 52 (2010) 3677-3686.
DOI URL |
[244] |
C. Thee, L. Hao, J. Dong, X. Mu, X. Wei, X. Li, W. Ke, Corros. Sci. 78 (2014) 130-137.
DOI URL |
[245] | D.-.H. Xia, C. Ma, S. Song, L. Xu, J. Electrochem. Soc. 166 (2019) B1000-B1009. |
[246] |
U. Langklotz, M. Babutzka, M. Schneider, A. Burkert, Mater. Corros. 70 (2019) 1314-1325.
DOI |
[247] | D. Xia, C. Ma, S. Song, CIESC Journal 70 (7) (2019) 2668-2674 http://hgxb.cip.com.cn/CN/10.11949/0438-1157.20190153. |
[248] | M. Guo, C. Dong, X. Zhang, S. Song, F. Lu, Fail. Anal. Prev. 5 (2010) 149-154. (in Chinese) |
[249] | E. Garcia-Ochoa, R. Ramirez, V. Torres, F.J. Rodriguez, J. Genesca, Corrosion 58 (2002) 756-760. |
[250] | Q. Cheng, S. Song, L. Song, B. Hou, J. Electrochem. Soc. 160 (2013) C380-C389. |
[251] |
A. Nishikata, Y. Yamashita, H. Katayama, T. Tsuru, a. Usami, K. Tanabe, H. Mabuchi, Corros. Sci. 37 (1995) 2059-2069.
DOI URL |
[252] | C. Somphotch, H. Hayashibara, A. Ooi, E. Tada, A. Nishikata, J. Electrochem. Soc. 165 (2018) C590-C600. |
[253] |
F. Wall, M. Martinez, N. Missert, R. Copeland, A. Kilgo, Corros. Sci. 47 (2005) 17-32.
DOI URL |
[254] | X. Ma, Q. Cheng, M. Zheng, F. Cui, B. Hou, Int. J. Electrochem. Sci. 10 (2015) 10402-10421. |
[255] |
H. Huang, Z. Dong, Z. Chen, X. Guo, Corros. Sci. 53 (2011) 1230-1236.
DOI URL |
[256] |
H. Huang, X. Guo, G. Zhang, Z. Dong, Corros. Sci. 53 (2011) 3446-3449.
DOI URL |
[257] |
H. Huang, X. Guo, G. Zhang, Z. Dong, Corros. Sci. 53 (2011) 1700-1707.
DOI URL |
[258] | B. Zhou, Electrochemical Detection for the Corrosion Behavior of Metal Struc-ture in Marine Environment, B.S. Thesis, 2009, Tianjin University, 2009. |
[1] | Li-Chuan Jia, Chang-Ge Zhou, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Facile fabrication of highly durable superhydrophobic strain sensors for subtle human motion detection [J]. J. Mater. Sci. Technol., 2022, 110(0): 35-42. |
[2] | Ranveer Singh, QadeerAkbar Sial, Seung-ik Han, Sanghee Nah, Ji-Yong Park, Hyungtak Seo. Nanoscale visualization of hot carrier generation and transfer at non-noble metal and oxide interface [J]. J. Mater. Sci. Technol., 2022, 98(0): 151-159. |
[3] | Huihui Bai, Zhixing Zhang, Yajie Huo, Yongtao Shen, Mengmeng Qin, Wei Feng. Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties [J]. J. Mater. Sci. Technol., 2022, 98(0): 169-176. |
[4] | Li Liu, Jian-Tang Jiang, Xiang-Yuan Cui, Bo Zhang, Liang Zhen, Simon P. Ringer. Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions [J]. J. Mater. Sci. Technol., 2022, 99(0): 61-72. |
[5] | Taegun Kim, Chanwoo Park, Edmund P. Samuel, Yong-Il Kim, Seongpil An, Sam S. Yoon. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric [J]. J. Mater. Sci. Technol., 2022, 100(0): 254-264. |
[6] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[7] | Wan Huang, Peng Guo, Bo Li, Li Fu, Cheng-Te Lin, Aimin Yu, Guosong Lai. Enzyme-catalyzed deposition of polydopamine for amplifying the signal inhibition to a novel Prussian blue-nanocomposite and ultrasensitive electrochemical immunosensing [J]. J. Mater. Sci. Technol., 2022, 102(0): 166-173. |
[8] | Yaling Wang, Wei Zhu, Yuan Deng, Pengcheng Zhu, Yuedong Yu, Shaoxiong Hu, Ruifeng Zhang. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer [J]. J. Mater. Sci. Technol., 2022, 103(0): 1-7. |
[9] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
[10] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
[11] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
[12] | Ju Tang, Jin Zhang, Weizuo Zhang, Yiming Xiao, Yanli Shi, Fanquan Kong, Wen Xu. Modulation of red-light emission from carbon quantum dots in acid-based environment and the detection of chromium (Ⅲ) ions [J]. J. Mater. Sci. Technol., 2021, 83(0): 58-65. |
[13] | Jiayun Feng, Yanhong Tian, Sumei Wang, Ming Xiao, Zhuang Hui, Chunjin Hang, Walter W. Duley, Y. Norman Zhou. Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires for a flexible strain sensor [J]. J. Mater. Sci. Technol., 2021, 84(0): 139-146. |
[14] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[15] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||