J. Mater. Sci. Technol. ›› 2022, Vol. 112: 11-23.DOI: 10.1016/j.jmst.2021.08.080
• Research Article • Previous Articles Next Articles
Muzhi Maa, Zhu Xiaoa,b,*(), Xiangpeng Mengc, Zhou Lia,d,*(
), Shen Gonga, Jie Daia, Hongyun Jiange, Yanbin Jianga, Qian Leid, Haigen Weif
Received:
2021-04-02
Revised:
2021-08-18
Accepted:
2021-08-24
Published:
2021-12-04
Online:
2021-12-04
Contact:
Zhu Xiao,Zhou Li
About author:
lizhou6931@163.com (Z. Li).Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys[J]. J. Mater. Sci. Technol., 2022, 112: 11-23.
Alloy | Cr | Ca | Sr | Cu |
---|---|---|---|---|
Cu-Cr | 0.57 | - | -. | Bal. |
Cu-Cr-Ca | 0.57 | 0.01 | - | Bal. |
Cu-Cr-Sr | 0.58 | - | 0.01 | Bal. |
Table 1. Chemical compositions of the Cu-Cr, Cu-Cr-Ca and Cu-Cr-Sr alloys (wt.%).
Alloy | Cr | Ca | Sr | Cu |
---|---|---|---|---|
Cu-Cr | 0.57 | - | -. | Bal. |
Cu-Cr-Ca | 0.57 | 0.01 | - | Bal. |
Cu-Cr-Sr | 0.58 | - | 0.01 | Bal. |
Fig. 1. Variations of Vickers hardness and electrical conductivity of the Cu-Cr, Cu-Cr-Ca and Cu-Cr-Sr alloys during isothermal aging treatment at (a, b) 400 and (c, d) 500 °C for different time.
Fig. 2. Stress versus strain curves of the Cu-Cr, Cu-Cr-Ca and Cu-Cr-Sr alloys after cold rolling and isothermal aging treatment at 400 °C for 3 h and 16 h.
Alloy | Aging time (h) | Yield strength (MPa) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|---|
Cu-Cr | 0 | 396 | 407 | 18.1 |
3 | 434 | 470 | 23.0 | |
16 | 173 | 330 | 48.0 | |
Cu-Cr-Ca | 0 | 398 | 409 | 18.2 |
3 | 440 | 477 | 21.8 | |
16 | 362 | 447 | 30.9 | |
Cu-Cr-Sr | 0 | 398 | 412 | 18.4 |
3 | 449 | 489 | 21.4 | |
16 | 431 | 466 | 22.1 |
Table 2. Mechanical properties of the Cu-Cr, Cu-Cr-Ca and Cu-Cr-Sr alloys after cold rolling and isothermal aging treatment at 400 °C for 3 h and 16 h.
Alloy | Aging time (h) | Yield strength (MPa) | Tensile strength (MPa) | Elongation (%) |
---|---|---|---|---|
Cu-Cr | 0 | 396 | 407 | 18.1 |
3 | 434 | 470 | 23.0 | |
16 | 173 | 330 | 48.0 | |
Cu-Cr-Ca | 0 | 398 | 409 | 18.2 |
3 | 440 | 477 | 21.8 | |
16 | 362 | 447 | 30.9 | |
Cu-Cr-Sr | 0 | 398 | 412 | 18.4 |
3 | 449 | 489 | 21.4 | |
16 | 431 | 466 | 22.1 |
Fig. 3. Inverse pole figure mappings of the transverse directions of the Cu-Cr, Cu-Cr-Ca and Cu-Cr-Sr alloys after (a-c) cold rolling and isothermal aging treatment at 400 °C for (d-f) 3 h and (g-i) 16 h.
Fig. 4. Fractions of deformed, substructured and recrystallized grains of the (a) Cu-Cr, (b) Cu-Cr-Ca and (c) Cu-Cr-Sr alloys after cold rolling and isothermal aging treatment at 400 °C for 3 h and 16 h.
Fig. 5. TEM images of the Cu-Cr alloy after isothermal aging treatment at 400 °C for 3 h: (a-c) BF images, (d) SAED image, (e) HRTEM and (f) corresponding RFFT images.
Fig. 7. TEM images of the Cu-Cr-Ca alloy after isothermal aging treatment at 400 °C for 3 h: (a-c) BF images, (d) SAED image, (e) HRTEM and (f) corresponding RFFT images.
Fig. 8. TEM images of the Cu-Cr-Ca alloy after isothermal aging treatment at 400 °C for 16 h: (a, b) BF images, (c) SAED image, (d, f) HRTEM and (e) corresponding RFFT images.
Fig. 9. TEM images of the Cu-Cr-Sr alloy after isothermal aging treatment at 400 °C for 3 h: (a-c) BF images, (d) SAED image, (e) HRTEM and (f) corresponding RFFT images.
Fig. 10. TEM images of the Cu-Cr-Sr alloy after isothermal aging treatment at 400 °C for 16 h: (a, b) BF images, (c) SAED image, (d, f) HRTEM and (e, g) corresponding RFFT images.
Alloy | Aging time (h) | | | | | | | D (μm) | | ρ (1014 m-2) | | F (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu-Cr | 0 | 0.397 | 2.239 | - | - | - | - | 10.77 | 0.003 | 10.3 | 0.028 | 0.29 | 0.004 |
3 | 0.050 | 0.281 | - | - | - | - | 4.94 | 0.007 | 3.76 | 0.010 | 0.62 | 0.010 | |
16 | 0.022 | 0.123 | - | - | - | - | 4.37 | 0.008 | 0.31 | 0.001 | 0.65 | 0.010 | |
Cu-Cr-Ca | 0 | 0.405 | 2.284 | 0.016 | 0.004 | - | - | 10.67 | 0.003 | 10.1 | 0.027 | 0.28 | 0.004 |
3 | 0.058 | 0.325 | 0.016 | 0.004 | - | - | 8.46 | 0.004 | 4.52 | 0.012 | 0.61 | 0.010 | |
16 | 0.034 | 0.190 | 0.016 | 0.004 | - | - | 8.03 | 0.005 | 2.62 | 0.007 | 0.64 | 0.010 | |
Cu-Cr-Sr | 0 | 0.409 | 2.304 | - | - | 0.002 | 0.001 | 10.74 | 0.003 | 10.2 | 0.028 | 0.29 | 0.004 |
3 | 0.064 | 0.363 | - | - | 0.002 | 0.001 | 9.26 | 0.004 | 5.45 | 0.015 | 0.62 | 0.010 | |
16 | 0.038 | 0.215 | - | - | 0.002 | 0.001 | 9.10 | 0.004 | 4.75 | 0.013 | 0.65 | 0.010 |
Table 3. Increases in electrical resistivity caused by solute atom, grain boundary, dislocation and second phase of the Cu-Cr, Cu-Cr-Ca and Cu-Cr-Sr alloys after cold rolling and isothermal aging treatment at 400 °C for 3 h and 16 h.
Alloy | Aging time (h) | | | | | | | D (μm) | | ρ (1014 m-2) | | F (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu-Cr | 0 | 0.397 | 2.239 | - | - | - | - | 10.77 | 0.003 | 10.3 | 0.028 | 0.29 | 0.004 |
3 | 0.050 | 0.281 | - | - | - | - | 4.94 | 0.007 | 3.76 | 0.010 | 0.62 | 0.010 | |
16 | 0.022 | 0.123 | - | - | - | - | 4.37 | 0.008 | 0.31 | 0.001 | 0.65 | 0.010 | |
Cu-Cr-Ca | 0 | 0.405 | 2.284 | 0.016 | 0.004 | - | - | 10.67 | 0.003 | 10.1 | 0.027 | 0.28 | 0.004 |
3 | 0.058 | 0.325 | 0.016 | 0.004 | - | - | 8.46 | 0.004 | 4.52 | 0.012 | 0.61 | 0.010 | |
16 | 0.034 | 0.190 | 0.016 | 0.004 | - | - | 8.03 | 0.005 | 2.62 | 0.007 | 0.64 | 0.010 | |
Cu-Cr-Sr | 0 | 0.409 | 2.304 | - | - | 0.002 | 0.001 | 10.74 | 0.003 | 10.2 | 0.028 | 0.29 | 0.004 |
3 | 0.064 | 0.363 | - | - | 0.002 | 0.001 | 9.26 | 0.004 | 5.45 | 0.015 | 0.62 | 0.010 | |
16 | 0.038 | 0.215 | - | - | 0.002 | 0.001 | 9.10 | 0.004 | 4.75 | 0.013 | 0.65 | 0.010 |
Alloy | Aging time (h) | | | | D (μm) | | | | | |
---|---|---|---|---|---|---|---|---|---|---|
Cu-Cr | 0 | 0.397 | - | - | 10.77 | 5.33 | 1.06 | 1.7 | 43 | 275 |
3 | 0.050 | - | - | 4.94 | 6.18 | 3.36 | 0.6 | 63 | 166 | |
16 | 0.022 | - | - | 4.37 | 6.51 | 42.72 | 0.4 | 67 | 48 | |
Cu-Cr-Ca | 0 | 0.405 | 0.016 | - | 10.67 | 5.30 | 1.07 | 4.9 | 43 | 272 |
3 | 0.058 | 0.016 | - | 8.46 | 5.78 | 2.61 | 3.9 | 48 | 182 | |
16 | 0.034 | 0.016 | - | 8.03 | 5.86 | 4.58 | 3.7 | 49 | 139 | |
Cu-Cr-Sr | 0 | 0.409 | - | 0.002 | 10.74 | 5.25 | 1.05 | 2.8 | 43 | 274 |
3 | 0.064 | - | 0.002 | 9.26 | 5.53 | 2.07 | 1.8 | 46 | 200 | |
16 | 0.038 | - | 0.002 | 9.10 | 5.62 | 2.42 | 1.6 | 46 | 187 |
Table 4. Calculated contributions of solid solution strengthening, grain boundary strengthening and dislocation strengthening on the increment of yield strengths of the Cu-Cr, Cu-Cr-Ca and Cu-Cr-Sr alloys after cold rolling and isothermal aging treatment at 400 °C for 3 h and 16 h.
Alloy | Aging time (h) | | | | D (μm) | | | | | |
---|---|---|---|---|---|---|---|---|---|---|
Cu-Cr | 0 | 0.397 | - | - | 10.77 | 5.33 | 1.06 | 1.7 | 43 | 275 |
3 | 0.050 | - | - | 4.94 | 6.18 | 3.36 | 0.6 | 63 | 166 | |
16 | 0.022 | - | - | 4.37 | 6.51 | 42.72 | 0.4 | 67 | 48 | |
Cu-Cr-Ca | 0 | 0.405 | 0.016 | - | 10.67 | 5.30 | 1.07 | 4.9 | 43 | 272 |
3 | 0.058 | 0.016 | - | 8.46 | 5.78 | 2.61 | 3.9 | 48 | 182 | |
16 | 0.034 | 0.016 | - | 8.03 | 5.86 | 4.58 | 3.7 | 49 | 139 | |
Cu-Cr-Sr | 0 | 0.409 | - | 0.002 | 10.74 | 5.25 | 1.05 | 2.8 | 43 | 274 |
3 | 0.064 | - | 0.002 | 9.26 | 5.53 | 2.07 | 1.8 | 46 | 200 | |
16 | 0.038 | - | 0.002 | 9.10 | 5.62 | 2.42 | 1.6 | 46 | 187 |
Alloy | Aging time (h) | d (nm) | f (%) | λ (nm) | | | | | | |
---|---|---|---|---|---|---|---|---|---|---|
Cu-Cr | 0 | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 7.5 | 0.343 | 139.0 | 420 | 252 | 1495 | 2167 | 126 | 126 | |
16 | 25 | 0.372 | 445.0 | 437 | 365 | 2837 | 3639 | 54 | 54 | |
Cu-Cr-Ca | 0 | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 5 | 0.352 | 91.4 | 26 | 79 | 12 | 118 | 168 | 118 | |
16 | 5 | 0.377 | 88.3 | 27 | 82 | 13 | 122 | 173 | 122 | |
Cu-Cr-Sr | 0 | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 3 | 0.349 | 55.1 | 26 | 69 | 10 | 104 | 227 | 104 | |
16 | 3 | 0.376 | 53.1 | 27 | 71 | 10 | 118 | 235 | 108 |
Table 5. Calculated contributions of precipitate strengthening on the increment of yield strengths of the Cu-Cr, Cu-Cr-Ca and Cu-Cr-Sr alloys after cold rolling and isothermal aging treatment at 400 °C for 3 h and 16 h.
Alloy | Aging time (h) | d (nm) | f (%) | λ (nm) | | | | | | |
---|---|---|---|---|---|---|---|---|---|---|
Cu-Cr | 0 | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 7.5 | 0.343 | 139.0 | 420 | 252 | 1495 | 2167 | 126 | 126 | |
16 | 25 | 0.372 | 445.0 | 437 | 365 | 2837 | 3639 | 54 | 54 | |
Cu-Cr-Ca | 0 | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 5 | 0.352 | 91.4 | 26 | 79 | 12 | 118 | 168 | 118 | |
16 | 5 | 0.377 | 88.3 | 27 | 82 | 13 | 122 | 173 | 122 | |
Cu-Cr-Sr | 0 | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 3 | 0.349 | 55.1 | 26 | 69 | 10 | 104 | 227 | 104 | |
16 | 3 | 0.376 | 53.1 | 27 | 71 | 10 | 118 | 235 | 108 |
Fig. 11. Calculated and experimental yield strengths of the (a) Cu-Cr, (b) Cu-Cr-Ca and (c) Cu-Cr-Sr alloys after cold rolling and isothermal aging treatment at 400 °C for 3 h and 16 h.
Fig. 12. Models established for first-principles calculation: (a-c) {100}, {110} and {111} pure metal models, (d) {100} solid solution model, (e) {100} interface model and (f-h) {100}, {110} and {111} segregation models.
[1] | P. Zhang, Q. Lei, X. Yuan, X. Sheng, D. Jiang, Y. Li, Z. Li, Mater. Today Commun. 25 (2020) 101353. |
[2] |
P. Zhang, Y. Li, Q. Lei, H. Tan, R. Shi, J. She, S. Li, J. Zhu, X. Sheng, J. Zhang, Z. Li, J. Mater. Res. Technol. 9 (2020) 2299-2307.
DOI URL |
[3] |
P. Zhang, J. Jie, Y. Gao, H. Li, T. Wang, T. Li, J. Mater. Res. 30 (2015) 2073-2080.
DOI URL |
[4] |
S. Fu, P. Liu, X. Chen, H. Zhou, F. Ma, W. Li, K. Zhang, Mater. Sci. Eng. A 802 (2021) 140598.
DOI URL |
[5] |
Y. Wang, H. Fu, J. Wang, H. Zhang, W. Li, J. Xie, J. Nucl. Mater. 526 (2019) 151753.
DOI URL |
[6] | M. Ma, Z. Li, Z. Xiao, H. Zhu, X. Zhang, F. Zhao, Mater. Sci. Eng. A 795 (2020) 140 0 01. |
[7] |
A. Popovich, V. Sufiiarov, I. Polozov, E. Borisov, D. Masaylo, A. Orlov, Mater. Lett. 179 (2016) 38-41.
DOI URL |
[8] |
S.C. Krishna, G.S. Rao, A.K. Jha, B. Pant, P.V. Venkitakrishnan, Mater. Sci. Eng. A 674 (2016) 164-170.
DOI URL |
[9] |
Y. Liu, Z. Li, Y. Jiang, Y. Zhang, Z. Zhou, Q. Lei, J. Mater. Res. 32 (2017) 1324.
DOI URL |
[10] |
M.Z. Ma, X. Zhang, Z. Li, Z. Xiao, H.Y. Jiang, Z.Q. Xia, H.Y. Huang, Crystals 10 (2020) 426.
DOI URL |
[11] |
W.U. Shanjiang, W. Junfeng, Z. Shuwei, Z. Jianbo, W. Hang, Y. Bin, Chin. J. Mater. Res. 33 (2019) 552-560.
DOI |
[12] |
Y. Sun, L. Peng, G. Huang, H. Xie, X. Mi, X. Liu, Mater. Sci. Eng. A 776 (2020) 139009.
DOI URL |
[13] |
Z. Zhao, Z. Xiao, Z. Li, M. Ma, J. Dai, J. Alloy. Compd. 752 (2018) 191-197.
DOI URL |
[14] | G.A. Snyder, Periodic Table, Springer, Netherlands, 1998. |
[15] |
Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, Z.K. Liu, Calphad 28 (2004) 79-90.
DOI URL |
[16] |
M.Z. Ma, Z. Li, W.T. Qiu, Z. Xiao, Z.Q. Zhao, Y.B. Jiang, J. Alloy. Compd. 788 (2019) 50-60.
DOI URL |
[17] |
X. Guo, Z. Xiao, W. Qiu, Z. Li, Z. Zhao, X. Wang, Y. Jiang, Mater. Sci. Eng. A 749 (2019) 281-290.
DOI URL |
[18] |
G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169-11186.
DOI PMID |
[19] |
J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244-13249.
PMID |
[20] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[21] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[22] |
M. Methfessel, A. Paxton, Phys. Rev. B 40 (1989) 3616-3621.
PMID |
[23] |
K. Wang, K.F. Liu, J.B. Zhang, Rare Met. 33 (2014) 134-138.
DOI URL |
[24] |
I.S. Batra, G.K. Dey, U.D. Kulkarni, S. Banerjee, J. Nucl. Mater. 299 (2001) 91-100.
DOI URL |
[25] |
R. Seth, S. Woods, Phys. Rev. B 2 (1970) 2961.
DOI URL |
[26] |
S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Mater. Sci. Eng. A 225 (1997) 118-124.
DOI URL |
[27] |
C. Xia, Y. Jia, W. Zhang, K. Zhang, Q. Dong, G. Xu, M. Wang, Mater. Des. 39 (2012) 404-409.
DOI URL |
[28] |
Y.P. Li, Z. Xiao, Z. Li, Z.Y. Zhou, Z.Q. Yang, Q. Lei, J. Alloy. Compd. 723 (2017) 1162-1170.
DOI URL |
[29] |
D. Risold, B. Hallstedt, L.J. Gauckler, H.L. Lukas, S.G. Fries, Calphad 20 (1996) 151-160.
DOI URL |
[30] |
K.M. Mannan, K.R. Karim, J. Phys. F Met. Phys. 5 (1975) 1687-1693.
DOI URL |
[31] |
P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, K. Xia, Scr. Mater. 66 (2012) 785-788.
DOI URL |
[32] |
J. Freudenberger, A. Kauffmann, H. Klauß, T. Marr, K. Nenkov, V.S. Sarma, L. Schultz, Acta Mater. 58 (2010) 2324-2329.
DOI URL |
[33] |
P. Rodríguez-Calvillo, N. Ferrer, J.M. Cabrera, J. Alloy. Compd. 626 (2015) 340-348.
DOI URL |
[34] |
S.Y. Chang, C.F. Chen, S.J. Lin, T.Z. Kattamis, Acta Mater. 51 (2003) 6291-6302.
DOI URL |
[35] |
S. Arajs, G. Dunmyre, J. Appl. Phys. 36 (1965) 3555-3559.
DOI URL |
[36] |
C. Michaelsen, C. Gente, R. Bormann, J. Mater. Res. 12 (1997) 1463-1467.
DOI URL |
[37] |
M.Z. Ma, Z. Li, W.T. Qiu, Z. Xiao, Z.L. Zhao, Y.B. Jiang, Z.Q. Xia, H.Y. Huang, J. Alloy. Compd. 820 (2020) 153112.
DOI URL |
[38] |
Y. Wu, Y. Li, J. Lu, S. Tan, F. Jiang, J. Sun, Mater. Sci. Eng. A 731 (2018) 403-412.
DOI URL |
[39] |
P. Luo, D.T. McDonald, S.M. Zhu, S. Palanisamy, M.S. Dargusch, K. Xia, Mater. Sci. Eng. A 538 (2012) 252-258.
DOI URL |
[40] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
[41] |
K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J. M. Schoenung, Acta Mater. 62 (2014) 141-155.
DOI URL |
[42] |
D.A. Hughes, N. Hansen, Acta Mater. 48 (20 0 0) 2985-30 04.
DOI URL |
[43] |
C. Booth-Morrison, D.N. Seidman, D.C. Dunand, Acta Mater. 60 (2012) 3643-3654.
DOI URL |
[44] |
H. Wang, L.K. Gong, J.F. Liao, H.M. Chen, W.B. Xie, B. Yang, J. Alloy. Compd. 749 (2018) 140-145.
DOI URL |
[45] |
D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50 (2002) 4021-4035.
DOI URL |
[46] |
M.C. Gao, Y. Suzuki, H. Schweiger, Ö.N. Do ˘gan, J. Hawk, M. Widom, J. Condens. Matter Phys. 25 (2013) 075402.
DOI URL |
[47] |
G.Y. Guo, H.H. Wang, Phys. Rev. B 62 (20 0 0) 5136-5143.
DOI URL |
[48] |
C. Booth-Morrison, D.C. Dunand, D.N. Seidman, Acta Mater. 59 (2011) 7029-7042.
DOI URL |
[49] |
A.J. Ardell, Metall. Trans. A 16 (1985) 2131-2165.
DOI URL |
[50] |
H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61 (2013) 2769-2782.
DOI URL |
[51] |
Z. Zhao, Z. Xiao, Z. Li, W. Qiu, H. Jiang, Q. Lei, Z. Liu, Y. Jiang, S. Zhang, Mater. Sci. Eng. A 759 (2019) 396-403.
DOI URL |
[52] |
J. Lee, J.Y. Jung, E.S. Lee, W.J. Park, S. Ahn, N.J. Kim, Mater. Sci. Eng. A 277 (1)(2000) 274-283.
DOI URL |
[53] |
Y. Sun, L. Peng, G. Huang, X. Feng, H. Xie, X. Mi, X. Liu, Mater. Sci. Eng. A 799 (2021) 140144.
DOI URL |
[54] | J. Li, H. Ding, B. Li, Mater. Sci. Eng. A 798 (2020) 140413. |
[55] |
H. Peng, W. Xie, H. Chen, H. Wang, B. Yang, J. Alloy. Compd. 852 (2021) 157004.
DOI URL |
[56] |
H. Zeng, H. Sui, S. Wu, J. Liu, H. Wang, J. Zhang, B. Yang, J. Alloy. Compd. 857 (2021) 157582.
DOI URL |
[57] |
J. Li, H. Ding, B. Li, W. Gao, J. Bai, G. Sha, Mater. Sci. Eng. A 802 (2021) 140628.
DOI URL |
[58] |
W. Wang, J. Zhu, N. Qin, Y. Zhang, S. Li, Z. Xiao, Q. Lei, Z. Li, J. Alloy. Compd. 847 (2020) 155762.
DOI URL |
[59] |
L. Peng, H. Xie, G. Huang, G. Xu, X. Yin, X. Feng, X. Mi, Z. Yang, J. Alloy. Compd. 708 (2017) 1096-1102.
DOI URL |
[60] |
S. Xu, H. Fu, Y. Wang, J. Xie, Mater. Sci. Eng. A 726 (2018) 208-214.
DOI URL |
[61] |
J.Y. Cheng, F.X. Yu, B. Shen, Mater. Lett. 115 (2014) 201-204.
DOI URL |
[62] |
Y.J. Hu, Y. Wang, W.Y. Wang, K.A. Darling, L.J. Kecskes, Z.K. Liu, Comput. Mater. Sci. 171 (2020) 109271.
DOI URL |
[1] | Jun Hwan Moon, Seunghyun Kim, Taesoon Kim, Yoo Sang Jeon, Yanghee Kim, Jae-Pyoung Ahn, Young Keun Kim. Electrical resistivity evolution in electrodeposited Ru and Ru-Co nanowires [J]. J. Mater. Sci. Technol., 2022, 105(0): 17-25. |
[2] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[3] | Yunwu Ma, Bingxin Yang, Shanqing Hu, He Shan, Peihao Geng, Yongbing Li, Ninshu Ma. Combined strengthening mechanism of solid-state bonding and mechanical interlocking in friction self-piercing riveted AA7075-T6 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2022, 105(0): 109-121. |
[4] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[5] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[6] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[7] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[8] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[9] | Cheng Zhu, Zhihao Zhao, Qingfeng Zhu, Gaosong Wang, Yubo Zuo, Qiangqiang Li, Gaowu Qin. Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 114-122. |
[10] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
[11] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
[12] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[13] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[14] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[15] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||