J. Mater. Sci. Technol. ›› 2022, Vol. 109: 267-275.DOI: 10.1016/j.jmst.2021.09.003
• Research Article • Previous Articles Next Articles
Pengfei Zhoua, Dong Liua, Yuyun Chena, Mingpeng Chena, Yunxiao Liub, Shi Chena, Chi Tat Kwokc, Yuxin Tangd,**(
), Shuangpeng Wanga,b,*(
), Hui Pana,b,*(
)
Received:2021-06-02
Revised:2021-08-17
Accepted:2021-09-05
Published:2022-05-20
Online:2021-10-08
Contact:
Yuxin Tang,Shuangpeng Wang,Hui Pan
About author:** College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China. E-mail addresses: yxtang@fzu.edu.cn (Y. Tang).Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst[J]. J. Mater. Sci. Technol., 2022, 109: 267-275.
Fig. 3. High-resolution XPS spectra of (a) Fe 2p, (b) Mn 2p, (c) Co 2p, (d) Cr 2p, (e) Ni 2p, (f) O 1s, and (g) S 2p, and (h) survey XPS spectrum for HEA-250Ni before and after 500 CV cycles.
Fig. 4. (a) OER linear sweep voltammetry curves with iR compensation, (b) Tafel slope, and (c) the double-layer capacitances (Cdl), and (d) the electrochemical impedance spectroscopies (EIS) and the equivalent circuit (inset) of Ni foam, HEA, and HEA-250Ni in 1 M KOH solution. (e) The cycle stability with iR correction for HEA-250Ni, and (f) time dependence of current density under constant potential without iR correction for HEA-250Ni.
Fig. 5. (a) HRTEM image, (b) SAED pattern, (c) Raman spectra, and High-resolution XPS spectra of (d) Fe 2p, (e) Mn 2p, (f) Co 2p, (g) Cr 2p, (h) Ni 2p, (i) O 1s, and (j) S2p for HEA-250Ni after the stability test.
| [1] |
K. Wu, X. Wei, D. Li, P. Hu, J. Mater. Sci. Technol. (2021), doi: 10.1016/j.jmst.2021.01.091.
DOI |
| [2] |
M. Ramadoss, Y. Chen, Y. Hu, B. Wang, R. Jeyagopal, K. Marimuthu, X. Wang, D. Yang, J. Mater. Sci. Technol. 78 (2021) 229-237.
DOI URL |
| [3] | T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A.M. Asiri, L. Chen, X. Sun, Adv. Energy Mater. 7 (2017) 201700020. |
| [4] |
W.J. Ong, N. Zheng, M. Antonietti, Nanoscale 13 (2021) 9904-9907.
DOI URL |
| [5] |
X. Shang, J.H. Tang, B. Dong, Y. Sun, Sustain. Energy Fuels 4 (2020) 3211-3228.
DOI URL |
| [6] |
S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A.M. Asiri, Q. Wu, X. Sun, J. Mater. Chem. A 8 (2020) 19729-19745.
DOI URL |
| [7] | Y. Wang, S. Tao, H. Lin, G. Wang, K. Zhao, R. Cai, K. Tao, C. Zhang, M. Sun, J. Hu, B. Huang, S. Yang, Nano Energy 8 (2021) 105606. |
| [8] | L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li, Y. Luo, S. Gao, X. Shi, A.M. Asiri, X. Sun, Small Struct. 2 (2020) 202000048. |
| [9] |
X. Du, H. Ai, M. Chen, D. Liu, S. Chen, X. Wang, K.H. Lo, H. Pan, Appl. Catal. B Environ. 272 (2020) 119046.
DOI URL |
| [10] |
J. Liu, T. Zhang, G.I.N. Waterhouse, J. Mater. Chem. A 8 (2020) 23142-23161.
DOI URL |
| [11] |
X. Ren, Y. Zhai, Q. Zhou, J. Yan, S. Liu, J. Energy Chem. 50 (2020) 125-134.
DOI URL |
| [12] |
C. Kim, S.H. Kim, S. Lee, I. Kwon, S.H. Kim, S. Kim, C. Seok, Y.S. Park, Y. Kim, J. Energy Chem. 64 (2022) 364-371.
DOI URL |
| [13] |
J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K.M. Lange, B. Zhang, J. Am. Chem. Soc. 140 (2018) 3876-3879.
DOI URL |
| [14] |
Y. Cao, T. Wang, X. Li, L. Zhang, Y. Luo, F. Zhang, A.M. Asiri, J. Hu, Q. Liu, X. Sun, Inorg. Chem. Front. 8 (2021) 3049-3054.
DOI URL |
| [15] |
C. Ye, L. Zhang, L. Yue, B. Deng, Y. Cao, Q. Liu, Y. Luo, S. Lu, B. Zheng, X. Sun, Inorg. Chem. Front. 8 (2021) 3162-3166.
DOI URL |
| [16] |
J.Y. Zhang, L. Lv, Y. Tian, Z. Li, X. Ao, Y. Lan, J. Jiang, C. Wang, ACS Appl. Mater. Interfaces 9 (2017) 33833-33840.
DOI URL |
| [17] |
C. Yan, J. Huang, C. Wu, Y. Li, Y. Tan, L. Zhang, Y. Sun, X. Huang, J. Xiong, J. Mater. Sci. Technol. 42 (2020) 10-16.
DOI URL |
| [18] |
Y. Pang, W. Xu, S. Zhu, Z. Cui, Y. Liang, Z. Li, S. Wu, C. Chang, S. Luo, J. Mater. Sci. Technol. 82 (2021) 96-104.
DOI |
| [19] |
G. Tian, S. Wei, Z. Guo, S. Wu, Z. Chen, F. Xu, Y. Cao, Z. Liu, J. Wang, L. Ding, J. Tu, H. Zeng, J. Mater. Sci. Technol. 77 (2021) 108-116.
DOI URL |
| [20] |
D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K.H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing, H. Pan, Adv. Energy Mater. 10 (2020) 2002464.
DOI URL |
| [21] | L. Wu, L. Yu, X. Xiao, F. Zhang, S. Song, S. Chen, Z. Ren, Research 2020 (2020) 3976278 (Washington DC). |
| [22] |
P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Mater. Sci. Eng. A 739 (2019) 86-89.
DOI URL |
| [23] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
| [24] |
D.B. Miracle, Mater. Sci. Technol. 31 (2015) 1142-1147.
DOI URL |
| [25] |
J. Gao, Y. Jin, Y. Fan, D. Xu, L. Meng, C. Wang, Y. Yu, D. Zhang, F. Wang, J. Mater. Sci. Technol. 102 (2022) 159-165.
DOI URL |
| [26] |
Z. He, N. Jia, H. Wang, H. Yan, Y. Shen, J. Mater. Sci. Technol. 86 (2021) 158-170.
DOI URL |
| [27] |
J. Xu, X. Kong, M. Chen, Q. Wang, F. Wang, J. Mater. Sci. Technol. 82 (2021) 207-213.
DOI URL |
| [28] |
S. Chang, X. Huang, C.Y. Aaron Ong, L. Zhao, L. Li, X. Wang, J. Ding, J. Mater. Chem. A 7 (2019) 18338-18347.
DOI URL |
| [29] |
P. Ma, S. Zhang, M. Zhang, J. Gu, L. Zhang, Y. Sun, W. Ji, Z. Fu, Sci. China Mater. 63 (2020) 2613-2619.
DOI URL |
| [30] |
G.M. Tomboc, T. Kwon, J. Joo, K. Lee, J. Mater. Chem. A 8 (2020) 14844-14862.
DOI URL |
| [31] |
H. Li, Y. Han, H. Zhao, W. Qi, D. Zhang, Y. Yu, W. Cai, S. Li, J. Lai, B. Huang, L. Wang, Nat. Commun. 11 (2020) 5437.
DOI URL |
| [32] |
J. Huang, P. Wang, P. Li, H. Yin, D. Wang, J. Mater. Sci. Technol. 93 (2021) 110-118.
DOI |
| [33] | X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray, G. Zhong, Z. Lin, M. Cui, A. Brozena, M. Hong, Q. Xia, J. Gao, G. Chen, R. Shahbazian-Yassar, D. Wang, L. Hu, Adv. Mater. 32 (2020) e2002853. |
| [34] |
N.L.N. Broge, M. Bondesgaard, F. Sondergaard-Pedersen, M. Roelsgaard, B.B. Iversen, Angew. Chem. Int. Ed Engl. 59 (2020) 21920-21924.
DOI URL |
| [35] |
M. Bondesgaard, N.L.N. Broge, A. Mamakhel, M. Bremholm, B.B. Iversen, Adv. Funct. Mater. 29 (2019) 1905933.
DOI URL |
| [36] |
H. Peng, Y. Xie, Z. Xie, Y. Wu, W. Zhu, S. Liang, L. Wang, J. Mater. Chem. A 8 (2020) 18318-18326.
DOI URL |
| [37] |
W. Dai, T. Lu, Y. Pan, J. Power Sources 430 (2019) 104-111.
DOI URL |
| [38] |
S. Gupta, S. Zhao, X.X. Wang, S. Hwang, S. Karakalos, S.V. Devaguptapu, S. Mukherjee, D. Su, H. Xu, G. Wu, ACS Catal. 7 (2017) 8386-8393.
DOI URL |
| [39] |
S. Li, X. Tang, H. Jia, H. Li, G. Xie, X. Liu, X. Lin, H.J. Qiu, J. Catal. 383 (2020) 164-171.
DOI URL |
| [40] | H.J. Qiu, G. Fang, J. Gao, Y. Wen, J. Lv, H. Li, G. Xie, X. Liu, S. Sun, ACS Mater. Lett. 1 (2019) 526-533. |
| [41] |
G. Fang, J. Gao, J. Lv, H. Jia, H. Li, W. Liu, G. Xie, Z. Chen, Y. Huang, Q. Yuan, X. Liu, X. Lin, S. Sun, H.J. Qiu, Appl. Catal. B Environ. 268 (2020) 118431.
DOI URL |
| [42] |
X. Cui, B. Zhang, C. Zeng, S. Guo, MRS Commun. 8 (2018) 1230-1235.
DOI URL |
| [43] |
Y. Liu, X. Liang, L. Gu, Y. Zhang, G.D. Li, X. Zou, J.S. Chen, Nat. Commun. 9 (2018) 2609.
DOI URL |
| [44] | V.R. Jothi, K. Karuppasamy, T. Maiyalagan, H. Rajan, C.Y. Jung, S.C. Yi, Adv. En-ergy Mater. 10 (2020) 1904020. |
| [45] |
X. Liu, M. Gong, S. Deng, T. Zhao, T. Shen, J. Zhang, D. Wang, Adv. Funct. Mater. 31 (2020) 2009032.
DOI URL |
| [46] |
X. Zhao, Y. Su, S. Li, Y. Bi, X. Han, J. Environ. Sci. 73 (2018) 47-57 (China).
DOI URL |
| [47] |
W. Chen, G. Qian, Q. Xu, C. Yu, M. Yu, Y. Xia, S. Yin, Nanoscale 12 (2020) 7116-7123.
DOI PMID |
| [48] |
J. Baltrusaitis, D.M. Cwiertny, V.H. Grassian, Phys. Chem. Chem. Phys. 9 (2007) 5542-5554.
PMID |
| [49] | S. Anantharaj, M. Venkatesh, A.S. Salunke, T.V.S.V. Simha, V. Prabu, S. Kundu, A.C.S. Sustain, Chem. Eng. 5 (2017) 10072-10083. |
| [50] |
F. Jin, H. Long, W. Song, G. Xiong, X. Guo, X. Wang, Energy Fuels 27 (2013) 3394-3399.
DOI URL |
| [51] |
M.A.Z.G. Sial, S. Baskaran, A. Jalil, S.H. Talib, H. Lin, Y. Yao, Q. Zhang, H. Qian, J. Zou, X. Zeng, Int. J. Hydrog. Energy 44 (2019) 22991-23001.
DOI URL |
| [52] |
M.Y. Wang, C.J. Jiang, X.W. Wang, P.F. Xian, H.G. Wang, Y. Yang, Rare Met. 36 (2015) 612-616.
DOI URL |
| [53] |
J. Sicklinger, H. Beyer, L. Hartmann, F. Riewald, C. Sedlmeier, H.A. Gasteiger, J. Electrochem. Soc. 167 (2020) 130507.
DOI URL |
| [54] |
N. Todoroki, T. Wadayama, ACS Appl. Mater. Interfaces 11 (2019) 44161-44169.
DOI URL |
| [55] |
J. Park, Y.J. Sa, H. Baik, T. Kwon, S.H. Joo, K. Lee, ACS Nano 11 (2017) 5500-5509.
DOI URL |
| [56] |
H. Liu, C. Xi, J. Xin, G. Zhang, S. Zhang, Z. Zhang, Q. Huang, J. Li, H. Liu, J. Kang, Chem. Eng. J. 404 (2021) 126530.
DOI URL |
| [57] |
H. Wang, R. Wei, X. Li, X. Ma, X. Hao, G. Guan, J. Mater. Sci. Technol. 68 (2021) 191-198.
DOI URL |
| [58] |
F. Li, Z. Sun, H. Jiang, Z. Ma, Q. Wang, F. Qu, Energy Fuels 34 (2020) 11628-11636.
DOI URL |
| [59] |
Z. Lu, L. Qian, Y. Tian, Y. Li, X. Sun, X. Duan, Chem. Commun 52 (2016) 908-911 (Camb).
DOI URL |
| [60] |
Q. Zhou, Y. Chen, G. Zhao, Y. Lin, Z. Yu, X. Xu, X. Wang, H.K. Liu, W. Sun, S.X. Dou, ACS Catal. 8 (2018) 5382-5390.
DOI URL |
| [61] |
R. Fan, Q. Mu, Z. Wei, Y. Peng, M. Shen, J. Mater. Chem. A 8 (2020) 9871-9881.
DOI URL |
| [62] |
Y. Yang, Y. Song, S. Mo, M. Liu, Chem. Eng. J. 417 (2020) 127934.
DOI URL |
| [63] |
M. Cai, W. Liu, X. Luo, C. Chen, R. Pan, H. Zhang, M. Zhong, ACS Appl. Mater. Interfaces 12 (2020) 13971-13981.
DOI URL |
| [64] |
W. Li, Q. Hu, Y. Liu, M. Zhang, J. Wang, X. Han, C. Zhong, W. Hu, Y. Deng, J. Mater. Sci. Technol. 37 (2020) 154-160.
DOI URL |
| [65] |
C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H.J. Fan, C. Yang, Energy Environ. Sci. 13 (2020) 86-95.
DOI URL |
| [66] |
M. Kuang, P. Han, Q. Wang, J. Li, G. Zheng, Adv. Funct. Mater. 26 (2016) 8555-8561.
DOI URL |
| [67] |
Z. Chen, L. Cai, X. Yang, C. Kronawitter, L. Guo, S. Shen, B.E. Koel, ACS Catal. 8 (2018) 1238-1247.
DOI URL |
| [68] |
J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2 (2000) 1319-1324.
DOI URL |
| [69] |
L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Nat. Commun. 10 (2019) 5106.
DOI URL |
| [70] |
X. Bo, Y. Li, R.K. Hocking, C. Zhao, ACS Appl. Mater. Interfaces 9 (2017) 41239-41245.
DOI URL |
| [71] |
W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Acc. Chem. Res. 53 (2020) 1111-1123.
DOI URL |
| [72] |
Z. Ding, J. Bian, S. Shuang, X. Liu, Y. Hu, C. Sun, Y. Yang, Adv. Sustain. Syst. 4 (2020) 1900105.
DOI URL |
| [73] |
Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li, Y. Zong, J. Yang, Y. Guo, Y. Zheng, X. Wang, Q. Yan, ACS Nano 11 (2017) 11031-11040.
DOI URL |
| [74] |
A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J. Zhou, Y. Shao-Horn, Nat. Commun. 4 (2013) 2439.
DOI PMID |
| [75] |
Y. Wang, T. Wang, R. Zhang, Q. Liu, Y. Luo, G. Cui, S. Lu, J. Wang, Y. Ma, X. Sun, Inorg. Chem. 59 (2020) 9491-9495.
DOI URL |
| [1] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
| [2] | Fan Yang, Lilin Wang, Zhijun Wang, Qingfeng Wu, Kexuan Zhou, Xin Lin, Weidong Huang. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 106(0): 128-132. |
| [3] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
| [4] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
| [5] | Jun Mei, Qian Zhang, Hong Peng, Ting Liao, Ziqi Sun. Phase engineering activation of low-cost iron-containing sulfide minerals for advanced electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 111(0): 181-188. |
| [6] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
| [7] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
| [8] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
| [9] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
| [10] | Jing Li, Fan Yang, Yunzhu Du, Xiyang Cai, Qiaodan Hu, Junliang Zhang. Bi0.15Sr0.85Co0.8Fe0.2O3-δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media [J]. J. Mater. Sci. Technol., 2022, 108(0): 158-163. |
| [11] | S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 197-208. |
| [12] | Yuan-Yuan Tan, Zhong-Jun Chen, Ming-Yao Su, Gan Ding, Min-Qiang Jiang, Zhou-Can Xie, Yu Gong, Tao Wu, Zhong-Hua Wu, Hai-Ying Wang, Lan-Hong Dai. Lattice distortion and magnetic property of high entropy alloys at low temperatures [J]. J. Mater. Sci. Technol., 2022, 104(0): 236-243. |
| [13] | Y.F. Zhao, H.H. Chen, D.D. Zhang, J.Y. Zhang, Y.Q. Wang, K. Wu, G. Liu, J. Sun. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116(0): 199-213. |
| [14] | Lin He, Shiwei Wu, Anping Dong, Haibin Tang, Dafan Du, Guoliang Zhu, Baode Sun, Wentao Yan. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117(0): 133-145. |
| [15] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
