J. Mater. Sci. Technol. ›› 2022, Vol. 107: 252-258.DOI: 10.1016/j.jmst.2021.08.047
• Research Article • Previous Articles Next Articles
Seungchan Choa,*(), Junghwan Kima,1, Ilguk Job, Jae Hyun Parkc, Jaekwang Leed, Hyun-Uk Honge, Bong Ho Leef, Wook Ryol Hwangg, Dong-Woo Suhh, Sang-Kwan Leea, Sang-Bok Leea,*(
)
Received:
2021-05-17
Revised:
2021-05-17
Accepted:
2021-05-17
Published:
2022-04-30
Online:
2022-04-28
Contact:
Seungchan Cho,Junghwan Kim,Sang-Bok Lee
About author:
1Contributions: these authors contributed equally to the work.Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Effect of molybdenum on interfacial properties of titanium carbide reinforced Fe composite[J]. J. Mater. Sci. Technol., 2022, 107: 252-258.
Fig. 1. Infiltration phenomena of (a) Fe-0.2C-7Mn and (b) Fe-0.2C-7Mn-0.5Mo alloys in porous TiC preform according to temperature. (c) Phase fraction diagrams and liquid/solid ratios of Fe-0.2C-7Mn and Fe-0.2C-7Mn-0.5Mo alloys calculated using FactSage.
Fig. 2. SEM-EDS images of (a) TiC-Fe (Fe-0.2C-7Mn) and (b) TiC-Fe(Mo) alloy (Fe-0.2C-7Mn-0.5Mo) composites fabricated by LPI process at 1873 K. (c) Tensile properties of TiC-Fe composites at RT and 973 K. (d) Fracture morphology of TiC-Fe(Mo) composite after tensile test at RT. The positions of curves are shifted arbitrarily. (e) Schematic of transgranular TiC fracture of TiC-Fe(Mo) composite.
Fig. 3. Interfacial microstructure of TiC-Fe(Mo) composites analyzed by APT. (a) SEM images of TiC-Fe sample prepared for APT analysis. (b) 3D atomic maps acquired from APT analysis. (c) Composition profiles across TiC/(Ti,Mo)C interphase. (d) Phase diagram of Fe0.2C7Mn-TiC-Mo at 1873 K and (e) concentration variation of MC carbide according to Mo content.
Fig. 4. (a) Total energy variation depending on positions of Mo atoms in TiC-Fe system. (b) Effect of Mo content on interfacial energy variation in TiC-Fe system. (c) DOS variation at TiC/Fe interface and at TiC/Fe(Mo) interface.
Fig. 5. (a) Movement of Mo atoms in TiC-Fe system at 1500 K and 1700 K. (b) Elastic modulus comparison of TiC-Fe(Mo) and TiC-Fe system using stress-strain curve.
[1] | B. Park, D. Lee, I. Jo, S.B. Lee, S.K. Lee, S. Cho, Compos. Pt. B-Eng., 181 (2020), Article 107584. |
[2] |
P.D. Enrique, E. Marzbanrad, Y. Mahmoodkhani, A. Keshavarzkermani, H.A. Momani, E. Toyserkani, N.Y. Zhou, J. Mater. Sci. Technol., 49(2020), pp. 81-90.
DOI |
[3] |
S. Cho, K. Kikuchi, A. Kawasaki, Acta Mater, 60(2012), pp. 726-736.
DOI URL |
[4] |
H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Carbon N Y, 47(2009), pp. 570-577.
DOI URL |
[5] |
K. Livanov, L. Yang, A. Nissenbaum, H.D. Wagner, Sci. Rep., 6(2016), p. 26305.
DOI URL |
[6] |
J. Park, J.H. Lee, I. Jo, S. Cho, S.K. Lee, S.B. Lee, H.J. Ryu, S.H. Hong, Surf. Coat. Technol., 307(2016), pp. 399-406.
DOI URL |
[7] |
S. Cho, I. Jo, B.M. Jung, E. Lee, J.R. Choi, S.-.K. Lee, S.-.B. Lee, Scr. Mater., 136(2017), pp. 50-54.
DOI URL |
[8] | T. Lee, J. Park, J. Lee, I. Jo, S. Cho, S.B. Lee, S.K. Lee, M.R. Muslih, H.J. Ryu, Funct. Compos. Struct., 1 (2019), Article 035002. |
[9] | H. Kurita, M. Estili, H. Kwon, T. Miyazaki, W. Zhou, J.F. Silvain, A. Kawasaki, Compos. Pt. A-Appl.Sci. Manuf., 68(2015), pp. 133-139. |
[10] |
H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki, Compos. Sci. Technol., 70(2010), pp. 546-550.
DOI URL |
[11] | Y.-.H. Lee, N. Kim, S.-.B. Lee, Y. Kim, S. Cho, S.-.K. Lee, I. Jo, Mater. Charact., 162 (2020), Article 110202. |
[12] |
W. Hu, Z. Huang, Q. Yu, Y. Wang, Y. Jiao, C. Lei, L. Cai, H. Zhai, Y. Zhou, J. Mater. Sci. Technol., 51(2020), pp. 70-78.
DOI URL |
[13] |
N.R. Oh, S.K. Lee, K.C. Hwang, H.U. Hong, Scr. Mater., 112(2016), pp. 123-127.
DOI URL |
[14] |
A. Gåård, P. Krakhmalev, J. Bergström, J. Alloy. Compd., 421(2006), pp. 166-171.
DOI URL |
[15] |
B. AlMangour, M.-.S. Baek, D. Grzesiak, K.-.A. Lee, Mater. Sci. Eng. A, 712(2018), pp. 812-818.
DOI URL |
[16] | J. Pörnbacher, H. Leitner, P. Angerer, T. Wojcik, S. Marsoner, G. Ressel, Mater. Charact., 156 (2019), Article 109880. |
[17] |
S. Lemboub, S. Boudebane, F.J. Gotor, S. Haouli, S. Mezrag, S. Bouhedja, G. Hesser, H. Chadli, T. Chouchane, Int. J. Refract. Met. Hard Mat., 70(2018), pp. 84-92.
DOI URL |
[18] | S.J. Park, Y. Jeong, C.W. Kim, J.H. Lee, S.C. Cho, S.B. Lee, S.K. Lee, D.H. Kim, H.U. Hong, Mater. Sci. Eng. A, 764 (2019), Article 138260. |
[19] | J. Pörnbacher, H. Leitner, P. Angerer, T. Wojcik, S. Marsoner, G. Ressel, Mater. Charact., 156 (2019), Article 109880. |
[20] |
G. Li, J. Jia, Y. Lyu, J. Zhao, J. Lu, Y. Li, F. Luo, Ceram. Int., 46(2020), pp. 5745-5752.
DOI URL |
[21] |
W.D. Kaplan, D. Rittel, M. Lieberthal, N. Frage, M.P. Dariel, Scr. Mater., 51(2004), pp. 37-41.
DOI URL |
[22] |
X.Q. Wang, X.X. He, H.L. Guo, Rare Met, 29(2010), pp. 346-350.
DOI URL |
[23] |
N. Liu, Y. Xu, Z. Li, M. Chen, G. Li, L. Zhang, Ceram. Int., 29(2003), pp. 919-925.
DOI URL |
[24] |
S.Q. Zhou, W. Zhao, W.H. Xiong, Y.N. Zhou, Acta Metall. Sin., 21(2008), pp. 211-219.
DOI URL |
[25] |
M. Kiviö, L. Holappa, T. Yoshikawa, T. Tanaka, High Temp. Mater. Proc, 33(2014), pp. 571-584.
DOI URL |
[26] | S. Cho, Y.-.H. Lee, S. Ko, H. Park, D. Lee, S. Shin, I. Jo, S.-.B. Lee, S.-.K. Lee, J. Alloy. Compd., 817 (2020), Article 152714. |
[27] |
Y.-.H. Lee, S. Ko, H. Park, D. Lee, S. Shin, I. Jo, S.-.B. Lee, S.-.K. Lee, Y. Kim, S. Cho, Appl. Surf. Sci., 480(2019), pp. 951-955.
DOI URL |
[28] |
J. Moon, S.-.J. Park, J.H. Jang, T.-.H. Lee, C.-.H. Lee, H.-.U. Hong, H.N. Han, J. Lee, B.H. Lee, C. Lee, Acta Mater, 147(2018), pp. 226-235.
DOI URL |
[29] |
P.E. Blöchl, Phys. Rev. B, 50(1994), pp. 17953-17979.
DOI URL |
[30] |
G. Kresse, J. Furthmüller, Comp. Mater. Sci., 6(1996), pp. 15-50.
DOI URL |
[31] | S. Plimpton, J. Comp. Phys., 117(1995), pp. 1-19. |
[32] |
C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-.H. Jung, Y.-.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, Calphad, 33(2009), pp. 295-311.
DOI URL |
[33] |
G. Kresse, J. Furthmüller, Phys. Rev. B, 54(1996), p. 11169.
DOI PMID |
[34] | K.T. Butler, G.S. Gautam, P. Canepa, npj Comput.Mater., 5(2019), p. 19. |
[35] |
T. Frolov, D.L. Olmsted, M. Asta, Y. Mishin, Nat. Commun., 4(2013), p. 1899.
DOI URL |
[1] | Yipeng Li, Guang Ran, Xinyi Liu, Qing Han, Xiuyin Huang, Yifan Ding. In-situ TEM investigation of dislocation loop reaction and irradiation hardening in H2+-He+ dual-beam irradiated Mo [J]. J. Mater. Sci. Technol., 2022, 107(0): 14-25. |
[2] | Kena Wu, Xiaonan Wei, Deng Li, Peng Hu. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting [J]. J. Mater. Sci. Technol., 2022, 99(0): 270-276. |
[3] | Chenglong Hu, Rida Zhao, Sajjad Ali, Yuanhong Wang, Shengyang Pang, Jian Li, Sufang Tang. Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process [J]. J. Mater. Sci. Technol., 2022, 101(0): 118-127. |
[4] | Bin Sun, Zili Zhang, Jing Xu, Yanpeng Lv, Yang Jin. Composite separator based on PI film for advanced lithium metal batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 264-271. |
[5] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[6] | Z.W. Yang, J.M. Lin, J.F. Zhang, Q.W. Qiu, Y. Wang, D.P. Wang, J. Song. An effective approach for bonding of TZM and Nb-Zr system: Microstructure evolution, mechanical properties, and bonding mechanism [J]. J. Mater. Sci. Technol., 2021, 84(0): 16-26. |
[7] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[8] | Nagaraj Murugan, Rajendran Jerome, Murugan Preethika, Anandhakumar Sundaramurthy, Ashok K. Sundramoorthy. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid [J]. J. Mater. Sci. Technol., 2021, 72(0): 122-131. |
[9] | Haiyang Yu, Zhenzhu Wang, Jiangfeng Ni, Liang Li. Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage [J]. J. Mater. Sci. Technol., 2021, 67(0): 237-242. |
[10] | Liang-Liang Zhang, Lin-Jie Zhang, Jian Long, Xiang-Dong Ding, Jun Sun, Yuan-Jun Sun. Improvement in the weldability of molybdenum alloy by pre-welding solid carburising [J]. J. Mater. Sci. Technol., 2021, 80(0): 1-12. |
[11] | Lingxu Yang, Ying Wang, Ruijia Liu, Huijun Liu, Xue Zhang, Chaoliu Zeng, Chao Fu. In-situ synthesis of nanocrystalline TiC powders, nanorods, and nanosheets in molten salt by disproportionation reaction of Ti(II) species [J]. J. Mater. Sci. Technol., 2020, 37(0): 173-180. |
[12] | Chavez Juan J.Gomez, Ravisankar Naraparaju, Peter Mechnich, Klemens Kelm, Uwe Schulz, C.V. Ramana. Effects of yttria content on the CMAS infiltration resistance of yttria stabilized thermal barrier coatings system [J]. J. Mater. Sci. Technol., 2020, 43(0): 74-83. |
[13] | Shuo Yin, Wenya Li, Bo Song, Xingchen Yan, Min Kuang, Yaxin Xu, Kui Wen, Rocco Lupoi. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying [J]. J. Mater. Sci. Technol., 2019, 35(6): 1003-1007. |
[14] | Xiaoyang Chen, Weijie Ni, Xiaojia Du, Zaihong Sun, Tenglong Zhu, Qin Zhong, Minfang Han. Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing [J]. J. Mater. Sci. Technol., 2019, 35(4): 695-701. |
[15] | , Yongsheng Liu, Mingxi Zhao, Fang Ye, Laifei Cheng. Effect of heat treatment temperature on microstructure and electromagnetic shielding properties of graphene/SiBCN composites [J]. J. Mater. Sci. Technol., 2019, 35(12): 2897-2905. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||