J. Mater. Sci. Technol. ›› 2022, Vol. 107: 243-251.DOI: 10.1016/j.jmst.2021.08.036
• Research Article • Previous Articles Next Articles
Seungchan Choa,*(), Junghwan Kima, Ilguk Job, Jae Hyun Parkc, Jaekwang Leed, Hyun-Uk Honge, Bong Ho Leef, Wook Ryol Hwangg, Dong-Woo Suhh, Sang-Kwan Leea, Sang-Bok Leea,*(
)
Received:
2021-06-24
Revised:
2021-06-24
Accepted:
2021-06-24
Published:
2022-04-30
Online:
2022-04-28
Contact:
Seungchan Cho,Sang-Bok Lee
About author:
pengy@lzu.edu.cn(Y. Peng).Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Quantitative reorientation behaviors of macro-twin interfaces in shape-memory alloy under compression stimulus in situ TEM[J]. J. Mater. Sci. Technol., 2022, 107: 243-251.
Fig. 1. Schematic illustrations of A-C and A-B type interfaces in NM martensite of Ni2MnGa alloy and the direction of in-situ TEM compression experiment applied stress. (a) A-C and (b) A-B type macro-twin interfaces.
Variant | [ | [$\bar{1}$10 | [ |
---|---|---|---|
A1 | [$\bar{1}$10 | [ | [ |
B3 | [ | [$\bar{1}$01 | [ |
C3 | [$\bar{1}$01 | [ | [ |
A2, B4, C4 | [01$\bar{1}$ | [ | [ |
Table 1 Lattice correspondence between martensitic variants and parent phase [45].
Variant | [ | [$\bar{1}$10 | [ |
---|---|---|---|
A1 | [$\bar{1}$10 | [ | [ |
B3 | [ | [$\bar{1}$01 | [ |
C3 | [$\bar{1}$01 | [ | [ |
A2, B4, C4 | [01$\bar{1}$ | [ | [ |
Fig. 2. The structural characterization of the A-C and A-B type interfaces before compression. (a) The BF image of the A-C type interface, in which top-right and bottom-right inserts are the detected SAED patterns of variants A and C taken from the blue and yellow circles in (a), respectively. (b) The SAED pattern of the twin interface taken from the red circle in (a). (c) The atomic HAADF image of the A-C type interface. (d) The BF image of the A-B type interface, in which top-right and bottom-right inserts are the SAED patterns of variants A and B taken from the blue and green circles in (d), respectively. (e) The SAED pattern taken from the red circle in (d). (f) The atomic HAADF image of the A-B type interface.
Variant pairs | K1 | K2 | η1 | η2 |
---|---|---|---|---|
A1-B3 and A1 | (0$\bar{1}$ | (0$\bar{1}$$\bar{1}$ | [0$\bar{1}$$\bar{1}$ | [0$\bar{1}$ |
A1-A2, C3 | ($\bar{1}$ | ($\bar{1}$ | [$\bar{1}$ | [$\bar{1}$ |
Table 2 Twinning elements between the martensitic variants.
Variant pairs | K1 | K2 | η1 | η2 |
---|---|---|---|---|
A1-B3 and A1 | (0$\bar{1}$ | (0$\bar{1}$$\bar{1}$ | [0$\bar{1}$$\bar{1}$ | [0$\bar{1}$ |
A1-A2, C3 | ($\bar{1}$ | ($\bar{1}$ | [$\bar{1}$ | [$\bar{1}$ |
Fig. 3. Mechanical characterization in situ TEM. (a) The recorded stress-depth curves of the A-C type (blue) and A-B type (red) macro-twin interfaces. (b-e) The SEM images before and after compression of the A-C type (b, c) and A-B type (d, e) interface cut into square pillars. Blue and red arrows point out their interface positions, respectively.
Schmid factor | Intra-plate | Inter-plate |
---|---|---|
Type A-C | 0.3837 | 0 |
Type A-B | 0.3837 | 0 |
Table 3 Schmid factors of two twin systems under compressive loading.
Schmid factor | Intra-plate | Inter-plate |
---|---|---|
Type A-C | 0.3837 | 0 |
Type A-B | 0.3837 | 0 |
Fig. 4. Structural characterization of the two interfaces after compression. (a) The BF image of the A-C type interface, in which top-right and bottom-right insets are the SAED patterns taken from the blue and yellow circles in (a), respectively. (b) The SAED pattern taken from the red circle in (a). (c) The BF image of the A-B type interface, in which top-right and bottom-right insets are the SAED patterns taken from the blue and green circles in (c), respectively. (d) The SAED pattern taken from the red circle in (c).
Fig. 5. The stereographic projections. (a, b) The A-C type interface before and after compression, in which variants A1, A2, C3 and C4 are marked by red, blue, green and purple solid points, respectively. The black points mark the projection of evolved single variant combined by variants A2 and C4. (c, d) The A-B type interface before and after compression, in which variants A1, A2, B3 and B4 are marked by red, blue, green and purple solid points, respectively. The black points mark the projection of evolved single variant combined by variants A2 and B4.
Fig. 6. The atomic models of reorientation behaviors of Ni2MnGa martensitic variants under the uniaxial compression. (a, b) The atomic structure of the A-C type interface before and after compression, respectively. (c, d) The atomic structure of the A-B type interface before and after compression, respectively.
Fig. 7. The geometric models of reorientation behaviors of martensitic variants under compressive loading. (a, c) The generation and movement of the twinning dislocations of the A-C and A-B type interfaces under the compression, respectively, in which arrows show the motion direction of the generated dislocations. (b, d) The outcomes of the A-C and A-B type interfaces after the action of compression, respectively.
[1] |
K. Ullakko, J. Mater. Eng. Perform., 5 (1996), pp. 405-409.
DOI URL |
[2] |
K. Ullakko, J.K. Huang, C. Kantner, R.C. Ohandley, V.V. Kokorin, Appl. Phys. Lett., 69 (1996), pp. 1966-1968.
DOI URL |
[3] |
K. Ullakko, J.K. Huang, V.V. Kokorin, R.C. Ohandley, Scr. Mater., 36 (1997), pp. 1133-1138.
DOI URL |
[4] |
R.C. O'Handley, J. Appl. Phys., 83 (1998), pp. 3263-3270.
DOI URL |
[5] | H.D. Chopra, C.H. Ji, V.V. Kokorin, Phys. Rev. B, 61 (2000), pp. 14913-14915 |
[6] |
A.A. Likhachev, K. Ullakko, Phys. Lett. A, 275 (2000), pp. 142-151.
DOI URL |
[7] |
B. Kiefer, D.C. Lagoudas, Philos. Mag., 85 (2005), pp. 4289-4329.
DOI URL |
[8] |
H.E. Karaca, I. Karaman, B. Basaran, Y.J. Chumlyakov, H.J. Maier, Acta Mater., 54 (2006), pp. 233-245.
DOI URL |
[9] |
O. Heczko, A. Sozinov, K. Ullakko, IEEE Trans. Magn., 36 (2000), pp. 3266-3268.
DOI URL |
[10] |
M. Vronka, L. Straka, M. De Graef, O. Heczko, Acta Mater., 184 (2020), pp. 179-186.
DOI URL |
[11] |
M. Veligatla, C. Titsch, W.G. Drossel, C.J. Garcia-Cervera, P. Mullner, Acta Mater., 186 (2020), pp. 389-395.
DOI URL |
[12] |
M. Veligatla, C.J. Garcia-Cervera, P. Mullner, Acta Mater., 193 (2020), pp. 221-228.
DOI URL |
[13] |
Z.B. Li, D. Li, J.X. Chen, B. Yang, N.F. Zou, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Acta Mater., 185 (2020), pp. 28-37.
DOI URL |
[14] |
S. Singh, B. Dutta, S.W. D'Souza, M.G. Zavareh, P. Devi, A.S. Gibbs, T. Hickel, S. Chadov, C. Felser, D. Pandey Nat. Commun., 8 (2017), p. 10.
DOI URL |
[15] | A. De, A.K. Singh, S. Singh, S. Nair, Phys. Rev. B, 103 (2021), p. 6. |
[16] |
Y. Niu, Y. Wang, L. Hou, L.S. Ba, Y.C. Dai, Y. Fautrelle, Z.B. Li, Z.M. Ren, X. Li, J. Mater. Sci. Technol., 66 (2021), pp. 91-96.
DOI URL |
[17] |
P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, Philos. Mag. B, 49 (1984), pp. 295-310.
DOI URL |
[18] |
B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo, K. Itagaki, J. Alloy. Compd., 290 (1999), pp. 137-143.
DOI URL |
[19] |
J. Pons, V.A. Chernenko, R. Santamarta, E. Cesari, Acta Mater., 48 (2000), pp. 3027-3038.
DOI URL |
[20] |
P.J. Brown, J. Crangle, T. Kanomata, M. Matsmuoto, K.U. Neumann, B. Ouladdiaf, K.R.A. Ziebeck, J. Phys. Condens. Matter., 14 (2002), pp. 10159-10171.
DOI URL |
[21] |
L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko, S. Besseghini, C. Ritter, F. Passaretti, Acta Mater., 56 (2008), pp. 4529-4535.
DOI URL |
[22] | B. Dutta, A. Cakir, C. Giacobbe, A. Al-Zubi, T. Hickel, M. Acet, J. Neugebauer, Phys. Rev. Lett., 116 (2016), p. 5. |
[23] |
L. Zhou, M.M. Schneider, A. Giri, K. Cho, Y. Sohn, Acta Mater., 134 (2017), pp. 93-103.
DOI URL |
[24] | S.J. Murray, M. Marioni, S.M. Allen, R.C. O'Handley, T.A. Lograsso, Appl.Phys. Lett., 77 (2000), pp. 886-888. |
[25] |
A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett., 80 (2002), pp. 1746-1748.
DOI URL |
[26] | A. Sozinov, N. Lanska, A. Soroka, W. Zou, Appl. Phys. Lett., 102 (2013), p. 5 |
[27] | A. Sozinov, A.A. Likhachev, K. Ullakko, C.S. Lynch, Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, Vol. 4333, ed. |
Spie-Int Soc Optical Engineering, Bellingham (2001), pp. 189-196. | |
[28] |
L. Straka, O. Heczko, J. Appl. Phys., 93 (2003), pp. 8636-8638.
DOI URL |
[29] | O. Heczko, L. Straka, V. Novak, S. Fahler, J. Appl. Phys., 107 (2010), p.3. |
[30] | S. Kaufmann, U.K. Rossler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, S. Fahler, Phys. Rev. Lett., 104 (2010), p.4. |
[31] |
C.B. Jiang, Y. Muhammad, L.F. Deng, W. Wu, H.B. Xu, Acta Mater., 52 (2004), pp. 2779-2785.
DOI URL |
[32] |
T.A. Schroeder, C.M. Wayman, Acta Metall., 25 (1977), pp. 1375-1391.
DOI URL |
[33] |
T. Saburi, C.M. Wayman, K. Takata, S. Nenno, Acta Metall., 28 (1980), pp. 15-32.
DOI URL |
[34] |
D.Y. Cong, Y.D. Zhang, C. Esling, Y.D. Wang, J.S. Lecomte, X. Zhao, L. Zuo, Acta Mater., 59 (2011), pp. 7070-7081.
DOI URL |
[35] |
S. Ouyang, Y.Q. Yang, M. Han, Z.H. Xia, B. Huang, X. Luo, G.M. Zhao, W. Zhang, Acta Mater., 84 (2015), pp. 484-496.
DOI URL |
[36] | S. Ouyang, G.M. Zhao, M. Han, Y. Zhu, Y.Q. Yang, J. Alloy. Compd., 821 (2020), p.11. |
[37] |
A.A. Likhachev, A. Sozinov, K. Ullakko, Mech. Mater., 38 (2006), pp. 551-563.
DOI URL |
[38] | Y.W. Lai, N. Scheerbaum, D. Hinz, O. Gutfleisch, R. Schafer, L. Schultz, J. McCord, Appl. Phys. Lett., 90 (2007), p.3. |
[39] |
M.J. Szczerba, R. Chulist, Acta Mater., 85 (2015), pp. 67-73.
DOI URL |
[40] |
L. Hou, Y. Niu, Y.C. Dai, L.S. Ba, Y. Fautrelle, Z.B. Li, B. Yang, C. Esling, X. Li, IUCrJ, 6 (2019), pp. 366-372.
DOI URL |
[41] | Y.L. Ge, N. Zarubova, Z. Dlabacek, I. Aaltio, O. Soderberg, S.P. Hannula, Czech Repbulic, September 7-11 (2009). |
[42] |
N. Zarubova, Y. Ge, O. Heczko, S.P. Hannula, Acta Mater., 61 (2013), pp. 5290-5299.
DOI URL |
[43] |
B. Muntifering, L. Kovarik, N.D. Browning, R.C. Pond, W.B. Knowlton, P. Mullner, J. Mater. Sci., 51 (2016), pp. 457-466.
DOI URL |
[44] | M. Klinger, A. Jager, J. Appl. Crystallogr., 48 (2015), pp. 2012-2018. |
[45] |
T. Saburi, C.M. Wayman, Acta Metall., 27 (1979), pp. 979-995.
DOI URL |
[46] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci., 39 (1995), pp. 1-157.
DOI URL |
[1] | Yipeng Li, Guang Ran, Xinyi Liu, Qing Han, Xiuyin Huang, Yifan Ding. In-situ TEM investigation of dislocation loop reaction and irradiation hardening in H2+-He+ dual-beam irradiated Mo [J]. J. Mater. Sci. Technol., 2022, 107(0): 14-25. |
[2] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[3] | Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire [J]. J. Mater. Sci. Technol., 2020, 45(0): 44-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||