J. Mater. Sci. Technol. ›› 2020, Vol. 37: 173-180.DOI: 10.1016/j.jmst.2019.08.017
• Research Article • Previous Articles Next Articles
Lingxu Yangab, Ying Wangab, Ruijia Liuab, Huijun Liuac*(), Xue Zhanga, Chaoliu Zengac, Chao Fuc
Received:
2019-05-31
Revised:
2019-07-29
Accepted:
2019-08-03
Published:
2020-01-15
Online:
2020-02-10
Contact:
Liu Huijun
Lingxu Yang, Ying Wang, Ruijia Liu, Huijun Liu, Xue Zhang, Chaoliu Zeng, Chao Fu. In-situ synthesis of nanocrystalline TiC powders, nanorods, and nanosheets in molten salt by disproportionation reaction of Ti(II) species[J]. J. Mater. Sci. Technol., 2020, 37: 173-180.
Fig. 1. XRD patterns of samples obtained by using equimolar ratio of Ti powder and acetylene black as precursors in NaCl-KCl molten salt at different temperatures for 2?h.
Fig. 2. XRD patterns of samples obtained by using equimolar ratio of Ti powder and acetylene black as precursors in NaCl-KCl molten salt at 800?°C for different times.
Fig. 3. (a, b) FE-SEM images of the sample obtained by using equimolar ratio of Ti powder and acetylene black as precursors in NaCl-KCl molten salt at 850?°C for 2?h; the inset shows a statistical particle size distribution in Fig. 3(b); (c, d) the corresponding elemental mappings of titanium and carbon of area A in Fig. 3(a).
Fig. 4. (a) TEM image and (b) the corresponding SAED pattern of TiC powder obtained by using equimolar ratio of Ti and acetylene black in NaCl-KCl molten salt at 850?°C for 2?h; (c) TEM image of a single TiC nanocrystalline and (d) HRTEM image of area A in Fig. 4(c).
Fig. 5. LSV curves of a molybdenum electrode (S?=?0.163 cm2) in NaCl-KCl molten salt without and with 0.1?mol L-1 Ti powder at 800?°C for different times at scan rate of 300?mV s-1.
Fig. 6. LSV curves (a) of a molybdenum electrode (S?=?0.163 cm2) in NaCl-KCl molten salt containing 0.1?mol L-1 Ti powder at different scan rates after Ti powder was added for 1?h at 800?°C; (b) the relationship between cathodic peak potential and logarithm of scan rate.
Fig. 8. (a) XRD diffractogram and (b, c, d) TEM images of TiC nanorods prepared by using equimolar ratio of Ti powder and MWCNTs as precursors in NaCl-KCl molten salt at 850?°C for 2?h; (e, f) HRTEM images of TiC nanoparticle; the inset shows the corresponding SAED pattern of area A in Fig. 8(e).
Fig. 9. (a) XRD diffractogram and (b) SEM image of TiC nanosheets prepared by using equimolar ratio of Ti powder and graphene as precursors in NaCl-KCl molten salt at 850?°C for 2?h; (c) TEM image of an individual TiC nanosheet; (d) high magnification TEM image of area A in Fig. 9(c); the inset shows the corresponding SAED pattern; (e) and (f) HRTEM images of a TiC nanocrystalline; the inset shows the corresponding SAED pattern of area B in Fig. 9(e).
|
[1] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
[2] | Nagaraj Murugan, Rajendran Jerome, Murugan Preethika, Anandhakumar Sundaramurthy, Ashok K. Sundramoorthy. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid [J]. J. Mater. Sci. Technol., 2021, 72(0): 122-131. |
[3] | Yanhui Li, Xingjie Jia, Wei Zhang, Yan Zhang, Guoqiang Xie, Zhiyong Qiu, Junhua Luan, Zengbao Jiao. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65(0): 171-181. |
[4] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
[5] | Na Wei, Yuan Lin, Zhenkui Li, Wenxia Sun, Guosong Zhang, Mingliang Wang, Hongzhi Cui. One-dimensional Ag2S/ZnS/ZnO nanorod array films for photocathodic protection for 304 stainless steel [J]. J. Mater. Sci. Technol., 2020, 42(0): 156-162. |
[6] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
[7] | Huijun Liu, Ying Wang, Lingxu Yang, Ruijia Liu, Chaoliu Zeng. Synthesis and characterization of nanosized Ti3AlC2 ceramic powder by elemental powders of Ti, Al and C in molten salt [J]. J. Mater. Sci. Technol., 2020, 37(0): 77-84. |
[8] | Miao Fang, Wang Qianqian, Zeng Qiaoshi, Hou Long, Liang Tao, Cui Zhiqiang, Shen Baolong. Excellent reusability of FeBC amorphous ribbons induced by progressive formation of through-pore structure during acid orange 7 degradation [J]. J. Mater. Sci. Technol., 2020, 38(0): 107-118. |
[9] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
[10] | K. Silambarasan, J. Archana, S. Harish, M. Navaneethan, R. Sankar Ganesh, S. Ponnusamy, C. Muthamizhchelvan, K. Hara. One-step fabrication of ultrathin layered 1T@2H phase MoS2 with high catalytic activity based counter electrode for photovoltaic devices [J]. J. Mater. Sci. Technol., 2020, 51(0): 94-101. |
[11] | A. Shuitcev, D.V. Gunderov, B. Sun, L. Li, R.Z. Valiev, Y.X. Tong. Nanostructured Ti29.7Ni50.3Hf20 high temperature shape memory alloy processed by high-pressure torsion [J]. J. Mater. Sci. Technol., 2020, 52(0): 218-225. |
[12] | Changsong Chen, Jiang Chen, Zhen Wang, Jian Zhang, Haisheng San, Shichao Liu, Chunyu Wu, Werner Hofmann. Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics [J]. J. Mater. Sci. Technol., 2020, 54(0): 48-57. |
[13] | Kunsik An, Jaehoon Kim, Mohammad Afsar Uddin, Seunghyun Rhee, Hyeok Kim, Kyung-Tae Kang, Han Young Woo, Changhee Lee. Germinant ZnO nanorods as a charge-selective layer in organic solar cells [J]. J. Mater. Sci. Technol., 2020, 55(0): 89-94. |
[14] | Zhen Sun, Shijie Hao, Genfa Kang, Yang Ren, Junpeng Liu, Ying Yang, Xiangguang Kong, Bo Feng, Cheng Wang, Kun Zhao, Lishan Cui. Exploiting ultra-large linear elasticity over a wide temperature range in nanocrystalline NiTi alloy [J]. J. Mater. Sci. Technol., 2020, 57(0): 197-203. |
[15] | H.R. Peng, B.S Liu, F. Liu. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy [J]. J. Mater. Sci. Technol., 2020, 43(0): 21-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||