J. Mater. Sci. Technol. ›› 2020, Vol. 57: 197-203.DOI: 10.1016/j.jmst.2020.01.073
• Research article • Previous Articles Next Articles
Zhen Suna, Shijie Haoa,b,*(), Genfa Kanga, Yang Renc, Junpeng Liud, Ying Yanga, Xiangguang Konga, Bo Fenga, Cheng Wanga, Kun Zhaoa, Lishan Cuia
Received:
2019-11-20
Accepted:
2020-01-31
Published:
2020-11-15
Online:
2020-11-20
Contact:
Shijie Hao
Zhen Sun, Shijie Hao, Genfa Kang, Yang Ren, Junpeng Liu, Ying Yang, Xiangguang Kong, Bo Feng, Cheng Wang, Kun Zhao, Lishan Cui. Exploiting ultra-large linear elasticity over a wide temperature range in nanocrystalline NiTi alloy[J]. J. Mater. Sci. Technol., 2020, 57: 197-203.
Fig. 1. Schematic of the design concept of the large linear elasticity with a wide temperature range. (a) Conventional stress-strain diagram of twinning-detwinning deformation. (b) Large linear elasticity assisted by the concurrency of elastic deformation and twinning deformation.
Fig. 2. Microstructures of NC-NiTi wire. (a) TEM bright-field image of annealed specimen. (b) 1D HE-XRD pattern of the annealed specimen. Insert is its corresponding 2D HE-XRD pattern. (c) 14 % tensile loading-unloading curve of the annealed specimen at 20 °C. (d) 1D HE-XRD pattern of the pre-deformed specimen. Insert is its corresponding 2D HE-XRD pattern. (e) Evolution of HE-XRD intensity for multiple planes of B19′-NiTi phase along the Debye-Scherrer rings (insert of Fig. 1(d)). (f) TEM bright-field image of the pre-deformed specimen.
Fig. 3. Mechanical response of NC-NiTi wire. (a) Tensile stress-strain curves at -197 °C and 20 °C. (b) Tensile loading-unloading curves at -197 °C, -100 °C, -50 °C, 20 °C and 70 °C. (c) Comparison of recovery strain between the NC-NiTi and other bulk metal materials with large elastic strains [10,45,46]. (d) Comparison of mechanical energy storage density and storage efficiency between the NC-NiTi (tested at -197 °C) and other various advanced materials [10,31,[47], [48], [49], [50], [51]].
Fig. 4. (a-c) In-situ synchrotron X-ray diffraction of NC-NiTi wire at 20 °C. (a) Evolution of in-situ HE-XRD patterns during a tensile loading-unloading deformation to 4.3 % macroscopic strain. (b) The d-spacing strain and calculated twinning-detwinning strain with respect to macroscopic strain perpendicular to the loading direction. (c) The plot of the d-spacing for (002) and (03) versus the azimuthal angle, the wire longitudinal direction is 90° and the transverse direction is 0°. (d) Microstructure evolution diagram of subsequent tensile loading-unloading for the pre-deformed sample, where the pink grains are in tension and the blue ones are in compression.
Fig. 5. Schematic representation for the formation of residual internal stress in NC-NiTi. (a) Stress-free microstructure of NC-NiTi (set PA and PB as the two grains of B2 phase) before pre-deformation, grains with different colors represent grains of different orientations. (b) Diagram of tensile loading of 14 %, where $\varepsilon _{\text{P}-\text{M}}^{\text{A}}$< $\varepsilon _{\text{P}-\text{M}}^{\text{B}}$, $\varepsilon _{e}^{\text{MA}}$>$\varepsilon _{\text{e}}^{\text{MB}}$. (c) Stress states of the two grains inside NC-NiTi (set MA and MB as the two grains of B19′ phase) after unloaded, where the red arrows represent the direction of internal stress.
Fig. 6. Linear elastic mechanical characteristics of the NiTi samples with varying mean grain sizes between 15 nm and 350 nm at 20 °C. (a) Tensile loading-unloading curves. (b) Grain-size dependence of yield stress and recovery strain. (c) Comparison of d-spacing strain and twinning-detwinning strain.
Fig. 7. Linear elastic mechanical characteristics of the NiTi with mean grain size of 15 nm and 350 nm from -150 °C to 70 °C. Testing temperature effect on (a) yield stress as well as (b) recovery strain. (c) Storage modulus change as a function of testing temperature. (d) Testing temperature effect on d-spacing strain and twinning-detwinning strain.
[1] |
L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, Science 304 (2004) 422-426.
URL PMID |
[2] | Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Adv. Mater. 18(2006) 2280-2283. |
[3] | Y.M. Wang, E. Ma, Appl. Phys. Lett. 85(2004) 2750-2752. |
[4] | Z.Y. Xu, Trans. Nonferrous Met. Soc. China 11 (1) (2001) 1-9. |
[5] | K. Otsuka, X. Ren, Prog. Mater. Sci. 50(2005) 511-678. |
[6] | Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, K. Ishida, Science 327 (2010) 1488-1490. |
[7] | H. Sehitoglu, C. Efstathiou, H.J. Maier, Y. Chumlyakov, Mech. Mater. 38(2006) 538-550. |
[8] | M.L. Young, M.F.X. Wagner, J. Frenzel, W.W. Schmahl, G. Eggeler, Acta Mater. 58(2010) 2344-2354. |
[9] | S.J. Hao, L.S. Cui, Y.D. Wang, D.Q. Jiang, C. Yu, J. Jiang, D.E. Brown, Y. Ren, Appl. Phys. Lett. 99(2011), 024102. |
[10] |
S. Hao, L. Cui, D. Jiang, X. Han, Y. Ren, J. Jiang, Y. Liu, Z. Liu, S. Mao, Y. Wang, Y. Li, X. Ren, X. Ding, S. Wang, C. Yu, X. Shi, M. Du, F. Yang, Y. Zheng, Z. Zhang, X. Li, D.E. Brown, J. Li, Science 339 (2013) 1191-1194.
DOI URL |
[11] |
T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, K. Ishida, Science 333 (2011) 68-71.
DOI URL |
[12] | Y.L. Hao, H.L. Wang, T. Li, J.M. Cairney, A.V. Ceguerra, Y.D. Wang, Y. Wang, D. Wang, E.G. Obbard, S.J. Li, R. Yang, J. Mater. Sci. Technol. 32(2016) 705-709. |
[13] | P.R. Thornton, T.E. Mitchell, Philos. Mag. 7(1962) 361-375. |
[14] | H. Suzuki, C.S. Barrett, Acta Metall. 6(1958) 156-165. |
[15] | W.R. Bin, M.R. Lopez, G.T.G. Iii, D.J. Idar, Mater. Res. Process. Sci. 7(1997) 523-528. |
[16] | S.G. Song, G.T. Gray, Acta Metall. Mater. 43(1995) 2325-2337. |
[17] | L. Straka, H. Hänninen, O. Heczko, Appl. Phys. Lett. 98(2011) 7-11. |
[18] | M. Vronka, H. Seiner, O. Heczko, Philos. Mag. 97(2017) 1479-1497. |
[19] | L. Straka, A. Soroka, H. Seiner, H. Hänninen, A. Sozinov, Scr. Mater. 67(2012) 25-28. |
[20] | V.A. Lubarda, M.A. Meyers, O. Vohringer, Acta Mater. 49(2001) 4025-4039. |
[21] | J. Wang, H. Sehitoglu, Acta Mater. 61(2013) 6790-6801. |
[22] | Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57(2012) 1-62. |
[23] | B.Q. Li, M.L. Sui, B. Li, E. Ma, S.X. Mao, Phys. Rev. Lett. 102(2009) 1-4. |
[24] | M. Sakairi, G. Proust, G.C. Kaschner, I.J. Beyerlein, B. Clausen, D.W. Brown, R.J. McCabe, C.N. Tomé, Experiment. Mech. 50(2010) 125-133. |
[25] | H.S. Park, K. Gall, J.A. Zimmerman, Phys. Rev. Lett. 95(2005) 1-4. |
[26] | S. Li, X. Ding, J. Deng, T. Lookman, J. Li, X. Ren, J. Sun, A. Saxena, Phys. Rev. B- Condens. Matter Mater. Phys. 82(2010) 1-12. |
[27] | S. Hu, C.H. Henager, L. Chen, Acta Mater. 58(2010) 6554-6564. |
[28] |
J. Wang, Z. Zeng, C.R. Weinberger, Z. Zhang, T. Zhu, S.X. Mao, Nat. Mater. 14(2015) 594-600.
URL PMID |
[29] | S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, S.H. Oh, Nat. Commun. 5(2014) 1-10. |
[30] | Y. Wang, Z. Che, Y. Wang, Y. Ren, S. Li, G. Liu, Acta Mater. 140(2017) 168-175. |
[31] | Y.F. Zheng, B.M. Huang, J.X. Zhang, L.C. Zhao, Mater. Sci. Eng. A 279 (2000) 25-35. |
[32] | L.C. Zhao, Y.F. Zheng, W. Cai, Intermetallics 13 (2005) 281-288. |
[33] | T. Birk, S. Biswas, J. Frenzel, G. Eggeler, Shape Mem. Superelasticity 2 (2016) 145-159. |
[34] | N. Narita, T. Umemoto, J. Takamura, A. Yamamoto, J. Jpn. Metal Soc. 49(1978) 1190-1199. |
[35] | W.T. Zheng, A. Li, Q. Jiang, J. Zhao, F.L. Meng, Mater. Lett. 62(2007) 964-966. |
[36] | T. Waitz, D. Spišák, J. Hafner, H.P. Karnthaler, Europhys. Lett. 71(2005) 98-103. |
[37] | T. Waitz, T. Antretter, F.D. Fischer, N.K. Simha, H.P. Karnthaler, J. Mech, Phys. Solids 55 (2007) 419-444. |
[38] | K. M, S. J.B, Acta Mater. 48(2000) 1325-1344. |
[39] | T. Waitz, Acta Mater. 53(2005) 2273-2283. |
[40] | T. Waitz, V. Kazykhanov, H.P. Karnthaler, Acta Mater. 52(2004) 137-147. |
[41] | T. Waitz, W. Pranger, T. Antretter, F.D. Fischer, H.P. Karnthaler, Mater. Sci. Eng.A 481-482(2008) 479-483. |
[42] | Z. Xiong, Z. Li, Z. Sun, S. Hao, Y. Yang, M. Li, C. Song, P. Qiu, L. Cui, J. Mater. Sci. Technol. 35(2019) 2238-2242. |
[43] | S. Miyazaki, S. Kimura, K. Otsuka, Y. Suzuki, Scr. Metall. Mater. 18(1984) 883-888. |
[44] | G.J.J. Gao, Y.J. Wang, S. Ogata, Comput. Mater. Sci. 79(2013) 56-62. |
[45] | Y. Wang, E. Ma, R.Z. Valiev, Y. Zhu, Adv. Mater. 16(2004) 328-331. |
[46] | M.N. Gusev, O.P. Maksimkin, F.A. Garner, J. Nucl. Phys. Mater. Sci. Radiat. Appl. 403(2010) 121-125. |
[47] | K. Komvopoulos, X.G. Ma, Appl. Phys. Lett. 87(2005) 1-3. |
[48] | G. Zadno, T. Duerig, Proc. MRS Int. Meet. Adv. Mater. 9(1989) 201-206. |
[49] | S. Hao, L. Cui, D. Jiang, C. Yu, J. Jiang, X. Shi, Z. Liu, S. Wang, Y. Wang, D.E. Brown, Y. Ren, Appl. Phys. Lett. 102(2013), 231905. |
[50] | C.R. Rathod, B. Clausen, M.A.M. Bourke, R. Vaidyanathan, Appl. Phys. Lett. 88(2006) 86-88. |
[51] | K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, M. Umemoto, Scr. Mater. 60(2009) 749-752. |
[1] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
[2] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[3] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[4] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[5] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
[6] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[7] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[8] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[9] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[10] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[11] | Yanhui Li, Xingjie Jia, Wei Zhang, Yan Zhang, Guoqiang Xie, Zhiyong Qiu, Junhua Luan, Zengbao Jiao. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65(0): 171-181. |
[12] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[13] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
[14] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[15] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||