J. Mater. Sci. Technol. ›› 2020, Vol. 57: 188-196.DOI: 10.1016/j.jmst.2020.03.053
• Research article • Previous Articles Next Articles
Wenguang Zhua, Changsheng Tanb, Ruoyu Xiaoa, Qiaoyan Suna,*(), Jun Suna
Received:
2020-01-03
Accepted:
2020-03-03
Published:
2020-11-15
Online:
2020-11-20
Contact:
Qiaoyan Sun
Wenguang Zhu, Changsheng Tan, Ruoyu Xiao, Qiaoyan Sun, Jun Sun. Slip behavior of Bi-modal structure in a metastable β titanium alloy during tensile deformation[J]. J. Mater. Sci. Technol., 2020, 57: 188-196.
Fig. 1. Engineering stress-strain curves of solid solution treated (ST) sample and solid solution treatment plus aging (STA) sample: (a) overall stress-strain curve; (b) close-up image of dash line area in (a) to show the elastic region.
Fig. 2. Microstructures of the alloy after ST and STA heat treatment: (a) solid solution treated at 800 ℃; (b) solid solution treated at 800 ℃ followed by 570 ℃/6 h aging.
Fig. 3. Bi-modal structures of Ti-5Al-4Zr-8Mo-7 V alloy after 800 ℃ solution treatment and 570 ℃ aging: (a) overall image shows primary α (αp), fine and coarse secondary α (αs); (b, c) the detailed substructures of coarse and fine αs with SAED pattern inserted, respectively.
Fig. 6. Dislocation morphologies in β matrix at 8% tensile strain: (a) B ≈ [$\bar{1}$ 11], g=[$\bar{11}$ 0]; (b) B ≈ [$\bar{1}$ 11], g=[$\bar{11}$ 0].
Fig. 8. Wavy slip in transformed β phase of 570 ℃ aged Bi-modal structure with 3% strain: (a) B ≈ [$\bar{1}$ 22], g=[01 $\bar{1}$]; (b) detailed dislocation configuration under g=[01 $\bar{1}$].
Fig. 9. Dislocation configurations in transformed β phase of 570 ℃ aged Bi-modal structure with 10 % strain: (a) B ≈ [013], g=[200]; (b) different region under B ≈ [013], g=[200].
Fig. 10. Plastic deformation in globular αp with 3% strain under different g: (a) B ≈ [1 $\bar{2}$ 1 $\bar{3}$], g=[0 $\bar{1}$ 11]; (b) B ≈ [1 $\bar{2}$ 1 $\bar{3}$], g=[1 $\bar{1}$ 01]; (c) high dislocation density at αp edge; (d) low dislocation density in the center of αp.
Fig. 11. Dislocation morphology in globular αp with 8% strain under different operation vector g. (a), (b) and (c) is under g=[$\bar{1}$ 011] with electron beam B ≈ [01 $\bar{1}$ 1]; (d), (e) and (f) is under g=[0001] under B ≈ [01 $\bar{1}$ 0]. (b), (e) and (c), (f) display the dislocation morphologies of edge and center region in αp, respectively.
Fig. 12. Plastic deformation of globular αp after tensile test under g=[$\bar{1}$ 011], B ≈ [01 $\bar{1}$ 1]: (a) core-shell structure of αp; (b) dislocation morphology in the hard shell area; (c) dislocation in the soft core area.
[1] | D. Banerjee, J.C. Williams, Acta Mater. 61(2013) 844-879. |
[2] | J.C. Williams, E.A. Starke, Acta Mater. 51(2003) 5775-5799. |
[3] | R. Dong, J. Li, H. Kou, J. Fan, B. Tang, J. Mater. Sci. Technol. 35(2019) 48-54. |
[4] | N.G. Jones, R.J. Dashwood, D. Dye, M. Jackson, Mater. Sci. Eng. A 490 (2008) 369-377. |
[5] | I. Weiss, S.L. Semiatin, Mater. Sci. Eng. A 243 (1998) 46-65. |
[6] | W. Zhu, J. Lei, Z. Zhang, Q. Sun, W. Chen, L. Xiao, J. Sun, Mater. Sci. Eng. A 762 (2019), 138086. |
[7] | W.G. Zhu, P. Li, X. Sun, W. Chen, H.L. Zhang, Q.Y. Sun, B. Liu, L. Xiao, J. Sun, Trans. Nonferrous Met. Soc. China 29 (2019) 1242-1251. |
[8] | S.A. Mantri, D. Choudhuri, T. Alam, G.B. Viswanathan, J.M. Sosa, H.L. Fraser, R. Banerjee, Scr. Mater. 154(2018) 139-144. |
[9] | S.K. Kar, S. Suman, S. Shivaprasad, A. Chaudhuri, A. Bhattacharjee, Mater. Sci. Eng. A 610 (2014) 171-180. |
[10] | M.F. Ashby, Philos. Mag. 21 (170) (1970) 399-424. |
[11] | C. Herrera, D. Ponge, D. Raabe, Acta Mater. 59(2011) 4653-4664. |
[12] | A. Kundu, D.P. Field, Mater. Sci. Eng. A 667 (2016) 435-443. |
[13] | D. Lunt, X. Xu, T. Busolo, J.Q. da Fonseca, M.Preuss, Scr. Mater. 145(2018) 45-49. |
[14] | X. Tan, D. Ponge, W. Lu, Y. Xu, X. Yang, X. Rao, D. Wu, D. Raabe, Acta Mater. 165(2019) 561-576. |
[15] | L. Chen, F.P. Yuan, P. Jiang, J.J. Xie, X.L. Wu, Mater. Sci. Eng. A 618 (2014) 563-571. |
[16] | W. Zhu, J. Lei, C. Tan, Q. Sun, W. Chen, L. Xiao, J. Sun, Mater. Des. 168(2019), 107640. |
[17] | Z. Zhao, J. Chen, S. Guo, H. Tan, X. Lin, W. Huang, J. Mater. Sci. Technol. 33 (2017) 675-681. |
[18] | S. Hémery, P. Villechaise, Acta Mater. 141(2017) 285-293. |
[19] | F. Bridier, P. Villechaise, J. Mendez, Acta Mater. 53(2005) 555-567. |
[20] | C. Tan, Q. Sun, L. Xiao, Y. Zhao, J. Sun, Mater. Sci. Eng. A 725 (2018) 33-42. |
[21] | L.R. Zeng, H.L. Chen, X. Li, L.M. Lei, G.P. Zhang, J. Mater. Sci. Technol. 34(2018) 782-787. |
[22] | M.P. Echlin, J.C. Stinville, V.M. Miller, W.C. Lenthe, T.M. Pollock, Acta Mater. 114(2016) 164-175. |
[23] | D. Lunt, J.Q. da Fonseca, D. Rugg, M. Preuss, Mater. Sci. Eng. A 680 (2017) 444-453. |
[24] | S.L. Raghunathan, A.M. Stapleton, R.J. Dashwood, M. Jackson, D. Dye, Acta Mater. 55(2007) 6861-6872. |
[25] | Y. Zhao, S. Wroński, A. Baczmański, L. Le Joncour, M. Marciszko, T. Tokarski, M. Wróbel, M. François, B.Panicaud, Acta Mater. 136(2017) 402-414. |
[26] | V. Hounkpati, S. Fréour, D. Gloaguen, V. Legrand, J. Kelleher, W. Kockelmann, S. Kabra, Acta Mater. 109(2016) 341-352. |
[27] | K. Hua, Y. Zhang, H. Kou, J. Li, W. Gan, J.-J. Fundenberger, C. Esling, Acta Mater. 132(2017) 307-326. |
[28] |
D. Qin, Y. Lu, Q. Liu, L. Zhou, Mater. Sci. Eng. A 561 (2013) 460-467.
DOI URL |
[29] | S. Zhang, W. Zeng, Q. Zhao, L. Ge, M. Zhang, Mater. Sci. Eng. A 708 (2017) 574-581. |
[30] | L. Ren, W. Xiao, H. Chang, Y. Zhao, C. Ma, L. Zhou, Mater. Sci. Eng. A 711 (2018) 553-561. |
[31] | B. He, J. Li, X. Cheng, H.-M. Wang, Mater. Sci. Eng. A 699 (2017) 229-238. |
[32] | Z. Wyatt, S. Ankem, J. Mater. Sci. 45 (18) (2010) 5022-5031. |
[33] |
J. Fan, J. Li, Y. Zhang, H. Kou, J. Ghanbaja, W. Gan, L. Germain, C. Esling, J. Appl. Crystallogr. 50(2017) 795-804.
URL PMID |
[34] | J. Huang, Z. Wang, J. Zhou, Metall. Mater. Trans. A 42 (2011) 2868-2880. |
[35] | P. Barriobero-Vila, G. Requena, S. Schwarz, F. Warchomicka, T. Buslaps, Acta Mater. 95(2015) 90-101. |
[36] | Z. Wang, Philos. Mag. 84(2004) 351-379. |
[37] | W. Zhu, Q. Sun, C. Tan, P. Li, L. Xiao, J. Sun, J. Alloys Compd. (2020), 154311. |
[38] | P. Castany, F. Pettinari-Sturmel, J. Douin, A. Coujou, Mater. Sci. Eng. A 680 (2017) 85-91. |
[39] |
C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu, W.Q. Wang, J. Alloys Compd. 550(2013) 23-30.
DOI URL |
[1] | Mohammad Sharear Kabir, Zhifeng Zhou, Zonghan Xie, Paul Munroe. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65(0): 108-117. |
[2] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[3] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[4] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[5] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[6] | Xu Lu, Dong Wang. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test [J]. J. Mater. Sci. Technol., 2021, 67(0): 243-253. |
[7] | Yi Yang, Di Xu, Sheng Cao, Songquan Wu, Zhengwang Zhu, Hao Wang, Lei Li, Shewei Xin, Lei Qu, Aijun Huang. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 52-60. |
[8] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[9] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[10] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[11] | Hongwang Zhang, Yiming Zhao, Yuhui Wang, Chunling Zhang, Yan Peng. On the microstructural evolution pattern toward nano-scale of an AISI 304 stainless steel during high strain rate surface deformation [J]. J. Mater. Sci. Technol., 2020, 44(0): 148-159. |
[12] | Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 24-30. |
[13] | Zhihong Wu, Hongchao Kou, Nana Chen, Mengqi Zhang, Ke Hua, Jiangkun Fan, Bin Tang, Jinshan Li. Duality of the fatigue behavior and failure mechanism in notched specimens of Ti-7Mo-3Nb-3Cr-3Al alloy [J]. J. Mater. Sci. Technol., 2020, 50(0): 204-214. |
[14] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park, Unhae Lee. Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 57(0): 123-130. |
[15] | Yinli Peng, Nan Wang. Effect of phase-separated patterns on the formation of core-shell structure [J]. J. Mater. Sci. Technol., 2020, 38(0): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||