J. Mater. Sci. Technol. ›› 2022, Vol. 106: 133-138.DOI: 10.1016/j.jmst.2021.06.083
• Letter • Previous Articles Next Articles
Gang Niua,b, Hatem S. Zurobc, R.D.K. Misrad, Huibin Wub,*(), Yu Zoua,*(
)
Revised:
2021-06-18
Published:
2022-04-20
Online:
2022-04-20
Contact:
Huibin Wu,Yu Zou
About author:
mse.zou@utoronto.ca (Y. Zou)Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure[J]. J. Mater. Sci. Technol., 2022, 106: 133-138.
Fig. 1. EBSD inverse pole figure (IPF) maps of CG (a) and CFT760 (b) steels. TEM micrographs of a RA zone (c) and coexistence zone of RA and PRA (d) in the CFT760 steel. (e) STEM image showing Cr23C6 morphology in the CFT760 steel with corresponding EDS elemental maps of C, Cr, and Nb in the dotted box region of (e) and the SADP of Cr23C6. (f) TEM image showing Nb(C, N) morphology of CFT760 steel with the EDS elemental maps of C, N, and Nb in the dotted box region of (f). The atomic arrangement of Nb(C, N) is detected by the high-resolution transmission electron microscope (HRTEM). (Note: Because Fig. 1(f) was obtained from carbon extraction replicas, the red color at the location of the precipitates is lighter than the surrounding area in the EDS elemental maps of carbon.)
Fig. 2. Williamson-Hall plots based on XRD profiles (inset) of the CFT760 and CG steels. The internal strain (ε) of CFT760 and CG steels are 0.417% and 0.0304%, respectively. The dislocation density of CFT760 and CG steels is 1.09 × 1015 m-2 and 5.77 × 1012 m-2, respectively.
Fig. 3. (a) Engineering stress-strain curves of the CFT750, CFT760, CFT770, CFT780 and CG steels. YS, UTS, UE, and TE are yield strength, ultimate tensile strength, uniform elongation, and total elongation, respectively. (b) WHR curves of CG and CFT760 steels. (c) Comparison of the YS versus UE of CFT steels with other representative AHSS with different matrix phases [[1], [2], [3], [5], [6], [7], [8], [9], 11, 14, [20], [21], [22], [23], [24], [25], [26], [27]].
Fig. 4. TEM micrographs of PRA at the true strains of 7% (a) and 10% (c), and RA at the true strains of 4% (b) and 7% (d). EBSD image quality and phase maps of CFT760 steel at the true strains of (e) 7%, (f) 14%, and (g) 24%. The red area indicates α’-martensite. TEM micrographs of RA at the true strains of 14% (h) and 35% (i). DDCs and M indicate the destroyed dislocation cells and α’-martensite, respectively. The XRD results of CFT760 (j) and CG (k) steels at different true stains (ε). (l) The volume fraction of α’-martensite in CFT760 and CG steels.
[1] | R. Ding, Y. Yao, B. Sun, G. Liu, J. He, T. Li, X. Wan, Z. Dai, D. Ponge, D. Raabe, C. Zhang, A. Godfrey, G. Miyamoto, T. Furuhara, Z. Yang, S. Zwaag, H. Chen, Sci. Adv. 13 (2020) eaay1430. |
[2] |
S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544 (2017) 460-464.
DOI URL |
[3] |
B. Hu, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, H.W. Luo, Acta Mater 174 (2019) 131-141.
DOI URL |
[4] |
V.S.A. Challa, X.L. Wan, M.C. Somani, L.P. Karjalainen, R.D.K. Misra, Scr. Mater. 86 (2014) 60-63.
DOI URL |
[5] |
Y.M. Wang, T. Voisin, J.T. McKeown, N.P.Calta J. Ye, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17 (2018) 63-71.
DOI URL |
[6] |
B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater 142 (2018) 283-362.
DOI URL |
[7] |
R. Zheng, M. Liu, Z. Zhang, K. Ameyama, C. Ma, Scr. Mater. 169 (2019) 76-81.
DOI URL |
[8] |
L. Xiong, Z.S. You, L. Lu, Scr. Mater. 119 (2016) 55-59.
DOI URL |
[9] |
H.T. Wang, N.R. Tao, K. Lu, Acta Mater 60 (2012) 4027-4040.
DOI URL |
[10] |
T.R. Smith, J.D. Sugar, C. San Marchi, J.M. Schoenung, Acta Mater 164 (2019) 728-740.
DOI URL |
[11] | Z. Wang, W. Lu, H. Zhao, C.H. Liebscher, J. He, D. Ponge, Sci. Adv. 6 (2020) eaba9543. |
[12] |
J. Gao, S. Jiang, H. Zhang, Y. Huang, D. Guan, Y. Xu, S. Guan, L.A. Bendersky, A.V. Davydov, Y. Wu, H. Zhu, Y. Wang, Z. Lu, W.M. Rainforth, Nature 590 (2021) 262-267.
DOI URL |
[13] |
H. Wu, G. Fan, Prog. Mater. Sci. 113 (2020) 100675.
DOI URL |
[14] |
G. Niu, H.B. Wu, Mater. Sci. Eng. A 772 (2020) 138669.
DOI URL |
[15] |
B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357 (2017) 1029-1032.
DOI PMID |
[16] |
M.X. Huang, B.B. He, J. Mater. Sci. Technol. 34 (2018) 417-420.
DOI |
[17] |
G. Niu, Q.B. Tang, H.S. Zurob, H.B. Wu, L.X. Xu, N. Gong, Mater. Sci. Eng. A 759 (2019) 1-10.
DOI URL |
[18] |
Y.Z. Zhang, J.J. Wang, N.R. Tao, J. Mater. Sci. Technol. 36 (2020) 65-69.
DOI |
[19] |
M. Deutges, H.P. Barth, Y. Chen, C. Borchers, R. Kirchheim, Acta Mater 82 (2015) 266-274.
DOI URL |
[20] |
H. Ueno, K. Kakihata, Y. Kaneko, S. Hashimoto, A. Vinogradov, Acta Mater 59 (2011) 7060-7069.
DOI URL |
[21] |
A. Kisko, A. S. Hamada, J. Talonen, D. Porter, L.P. Karjalainen, Mater. Sci. Eng. A 657 (2016) 359-370.
DOI URL |
[22] |
M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, A. Kyröläinen, Metall. Mater. Trans. A 40 (2009) 729-744.
DOI URL |
[23] |
F. Berrenberg, C. Haase, L.A. Barrales-Mora, D. Molodov, Mater. Sci. Eng. A 681 (2017) 56-64.
DOI URL |
[24] |
X. Li, R. Song, N. Zhou, J. Li, Scr. Mater. 154 (2018) 30-33.
DOI URL |
[25] |
C. García-Mateo, F.G. Caballero, Mater. Trans. 46 (2005) 1839-1846.
DOI URL |
[26] |
B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani, F.G. Caballero, J. Mater. Sci. 46 (2013) 1839-1846.
DOI URL |
[27] |
M.W. Vaughan, P. Samimi, S.L. Gibbons, R.A. Abrahams, R.C. Harris, R.E. Barber, I. Karaman, Scr. Mater. 184 (2020) 63-69.
DOI URL |
[28] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7 (2019) 393-398.
DOI URL |
[29] | F.R.N. Nabarro, Z.S. Basinski, D.B. Holt, Adv. Phys. 7 (2019) 393-398. |
[30] |
M. Shamsujjoha, S.R. Agnew, J.M. Fitz-Gerald, Metall. Mater. Trans. A 49 (2018) 3011-3027.
DOI URL |
[31] | T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15 (1999) 30-36. |
[32] |
D.P. Abraham, C.J. Altstetter, Metall. Mater. Trans. A 26 (1995) 2859-2871.
DOI URL |
[33] |
G. Niu, H.B. Wu, D. Zhang, N. Gong, D. Tang, Mater. Sci. Eng. A 725 (2018) 187-195.
DOI URL |
[34] |
A. Kisko, R.D.K. Misra, J. Talonen, L.P. Karjalainen, Mater. Sci. Eng. A 578 (2013) 408-416.
DOI URL |
[35] |
J. Liu, C. Chen, Q. Feng, X. Fang, H. Wang, F. Liu, Mater. Sci. Eng. A 703 (2017) 236-243.
DOI URL |
[1] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
[2] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[3] | Qiuzhi Gao, Ziyun Liu, Huijun Li, Hailian Zhang, Chenchen Jiang, Aimin Hao, Fu Qu, Xiaoping Lin. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68(0): 91-102. |
[4] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[5] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[6] | Yanmo Li, Yongchang Liu, Chenxi Liu, Chong Li, Zongqing Ma, Yuan Huang, Zumin Wang, Wenya Li. Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel [J]. J. Mater. Sci. Technol., 2018, 34(4): 653-659. |
[7] | Zhou Yinghui, Liu Yongchang, Zhou Xiaosheng, Liu Chenxi, Yu Jianxin, Huang Yuan, Li Huijun, Li Wenya. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33(12): 1448-1456. |
[8] | Li Changsheng, Ma Biao, Song Yanlei, Zheng Jianjun, Wang Jikai. Grain refinement of non-magnetic austenitic steels during asymmetrical hot rolling process [J]. J. Mater. Sci. Technol., 2017, 33(12): 1572-1576. |
[9] | Ke YANG, Manqi LÜ. Antibacterial Properties of an Austenitic Antibacterial Stainless Steel and Its Security for Human Body [J]. J Mater Sci Technol, 2007, 23(03): 333-336. |
[10] | Li XING, Jie ZHAO, Fuzhong SHEN, Wei FENG. Z-parameter Method for Damage Evaluation in HK40 Steel [J]. J Mater Sci Technol, 2007, 23(03): 329-332. |
[11] | ZHU Suming ZHU Shijie WANG Fugang ZHANG Junshan ** Dalian University of Technology,Dalian,116024,China*** Institute of Metal Research,Academia Sinica,Shenyang,110015,China+ To whom correspondence should be addressed. Carbide Effects on Creep Crack Growth of Ni-Cr Austenitic Steels [J]. J Mater Sci Technol, 1992, 8(6): 391-396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||