J. Mater. Sci. Technol. ›› 2022, Vol. 105: 242-258.DOI: 10.1016/j.jmst.2021.07.024
• Research Article • Previous Articles Next Articles
Yeonju Oha, Won-Seok Kob, Nojun Kwaka, Jae-il Jangc, Takahito Ohmurad,*(
), Heung Nam Hana,**(
)
Received:2021-01-27
Revised:2021-07-11
Accepted:2021-07-20
Published:2021-09-20
Online:2021-09-20
Contact:
Takahito Ohmura,Heung Nam Han
About author:**E-mail addresses: hnhan@snu.ac.kr (H.N. Han).Yeonju Oh, Won-Seok Ko, Nojun Kwak, Jae-il Jang, Takahito Ohmura, Heung Nam Han. Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten[J]. J. Mater. Sci. Technol., 2022, 105: 242-258.
Fig. 1. (a) Schematic representation of the fracture analysis diagram reflecting the temperature dependence of the local effective yield and fracture stresses of the material. The intermediate temperature region represents the BDT region, where the fracture behavior of the material changes from brittle to ductile. (b) Schematic representation of a high-temperature nano-indentation system for evaluating local effective yield stress in the diagram. (c) Schematic illustration of a bcc bi-crystal cell with symmetric tilt GBs prepared for the present MD simulations. The color of atoms in the atomic snapshots is scaled according to the CNA pattern [61], where blue atoms correspond to a bcc structure and gray atoms indicate an unspecified structure.
Fig. 2. (a) EBSD orientation maps of 80rolled, 50rolled, as-received, and annealed specimens. To clarify the grain shape of each specimen, their crystallographic orientations of each specimen are presented using colored cuboidal surface maps along the ND, RD, and TD. (b) FWHM values obtained at major diffraction peaks of bcc W using CuKa1 radiation. (c) Experimental q values and the fraction of edge component calculated using the MWH method. Red dotted lines correspond to the theoretical q values for the pure screw (2.034) and pure edge (-0.841) components [42].
Fig. 3. Results of high-temperature nano-indentation tests to obtain the critical shear stress value for the onset of plastic yielding. (a) P-h curves of the as-received specimen at RT and elevated temperatures. Insets are SPM images that show a part of the indented area after the unloading. (b) Cumulative probability of the τmax experimentally obtained for the as-received specimen at different temperatures. Solid lines correspond to the best fit obtained between the experimental data and cumulative distribution function of the lognormal distribution. (c) Typical P-h curves of all the W specimens at RT and elevated temperatures. Among the various results obtained under certain conditions, the results with a cumulative probability of approximately 50% are shown as examples. Magnified images exhibiting the pop-in event are presented separately below each figure.
Fig. 4. Temperature dependence of the τmax obtained for the (a) 80rolled, (b) 50rolled, (c) as-received, and (d) annealed specimens. Experimental data at selected cumulative probabilities (F(τ) = 0.1, 0.3, 0.5, 0.7, and 0.9) are presented along with the corresponding linear regression of data points [Eq. (7)].
Fig. 5. Ideal (theoretical) mechanical responses in tensile simulation of bcc W single crystals for usual cleavage planes. (a) The resultant ideal stress-distance responses of predefined fracture surfaces of (100), (110), and (111) calculated using the molecular statics simulations based on present and previously published [46] 2NN MEAM potentials compared to the present DFT calculation. (b) Fracture stresses of bcc single crystal cells for the loading directions of [100], [110], and [111], which were obtained using MD simulations according to the present 2NN MEAM potential.
Fig. 6. Fracture behavior of tilt GBs with diverse misorientation angles in pure W. (a) GB energies of [100], [110], and [111] symmetrical tilt GBs in bcc W calculated using molecular statics simulations based on the present and previously published [46] 2NN MEAM potentials compared to the present DFT data [72] (b) Tensile stress-strain responses of bcc bi-crystal cells with special ([100] tilt 36.9°, Σ5), low-angle ([110] tilt 10.1°), and high-angle ([111] tilt 32.2°) GBs calculated via the MD simulations based on the 2NN MEAM potential developed in this study. Results of tensile loadings at selected temperatures (50, 300, 600, and 850 K) are presented as examples. Snapshots of bi-crystals at selected temperatures and different levels of strains are also presented. The color of atoms in the atomic snapshots is scaled according to the CNA [61] pattern. (c) Fracture stresses of symmetric tilt GBs with various misorientation angles. Results of tensile loadings at selected temperatures (50, 300, 600, and 850 K) are presented as examples.
Fig. 7. (a) Fractographs observed by the SEM after the tensile tests at different temperatures. The upper parts show the fracture morphologies of tests performed at lower temperatures and the lower parts at relatively higher temperatures. The corresponding values of energy plastically absorbed during the tensile loading are notated in the figures with yellow color. (b) Typical flexural stress-strain curves of three-point bending tests for selected as-received specimens as an example. (c) Fractured specimens corresponding to each curve in (b), showing BDT.
Fig. 8. Present fracture analysis diagram of (a) 80rolled, (b) 50rolled, (c) as-received, and (d) annealed W specimens established by combining the τmax measured using nano-indentation and fracture shear stress obtained using MD simulation. The red solid line indicates the temperature dependence of the τmax at [F(τ) = 97.7%] corresponding to (μ+2σ). Blue-colored solid and dotted lines correspond to the (μ-2σ) and (μ-3σ) of data points for the GB fracture stress, respectively. Here, μ is the mean of the distribution and σ is its standard deviation determined by the lognormal distribution fitting (Fig. S5 and S6). The BDT region corresponds to the range between two intersects of red solid and blue solid/dotted lines (gray-hatched areas).
Fig. 9. (a) Temperature dependence of absorbed energy during tensile and bending tests for 80rolled (purple), 50rolled (blue), as-received (green), and annealed (red) specimens. Data points with the circle and diamond-shape on the solid line represent the experimental values of the tensile test and three-point bending test, respectively, corresponding to the results shown in Fig. S7. (b) Temperature dependence of absorbed energy of the as-received specimens having different orientation. The inset is the schematic representation of the specimens extracted from the as-received rolled plate in different direction. Data points with the circle, diamond, triangle, and square-shape represent the experimental values, corresponding to the results shown in Fig. S8. The shaded areas in both (a) and (b) represent the BDT regions estimated using the present fracture analysis diagram in this study.
Fig. 10. Correlation between the dislocation density obtained by the XRD measurement, BDT region determined using the present fracture analysis diagram, activation enthalpy of pop-in determined by Eq. (7) and the shear strain rate calculated using Eq. (8) for eachWspecimen.
| [1] | C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, S. Middlemas, Int. J. Re- fract. Met. Hard Mater. 75 (2018) 170-183. |
| [2] |
Q. Wei, L. Kecskes, Mater. Sci. Eng., A 491 (2008) 62-69.
DOI URL |
| [3] | Q. Wei, T. Jiao, K. Ramesh, E. Ma, L. Kecskes, L. Magness, R. Dowding, V. Kazykhanov, R. Valiev, Acta Mater 54 (2006) 77-87. |
| [4] |
Q. Wei, K. Ramesh, E. Ma, L. Kesckes, R. Dowding, V. Kazykhanov, R. Valiev, Appl. Phys. Lett. 86 (2005) 101907.
DOI URL |
| [5] | J. Reiser, J. Hoffmann, U. Jäntsch, M. Klimenkov, S. Bonk, C. Bonnekoh, M. Rieth, A. Hoffmann, T. Mrotzek, Ductilisation of tungsten (W): on the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling, Int. J. Refract. Met. Hard Mater. 54 (2016) 351-369. |
| [6] |
Y. Oh, N. Kwak, K. Lee, W.-.S. Ko, H.N. Han, J. Alloys Compd. 787 (2019) 801-814.
DOI URL |
| [7] | C. Bonnekoh, A. Hoffmann, J. Reiser, The brittle-to-ductile transition in cold rolled tungsten: on the decrease of the brittle-to-ductile transition by 600K to -65 °C, Int. J. Refract. Met. Hard Mater. 71 (2018) 181-189. |
| [8] | G.E. Dieter, D.J. Bacon, McGraw-hill, New York, 1986. |
| [9] | J. Lancaster, in: J. Lancaster (Ed.), Engineering Catastrophes, 3rd Edition, Wood- head Publishing, 2005, pp. 139-189. |
| [10] |
J. Linke, J. Du, T. Loewenhoff, G. Pintsuk, B. Spilker, I. Steudel, M. Wirtz, Matter. Radiat. at Extremes 4 (2019) 056201.
DOI URL |
| [11] | S.J. Zinkle, J.T. Busby, Mater. Today 12 (2009) 12-19. |
| [12] |
T. Zhang, H.W. Deng, Z.M. Xie, R. Liu, J.F. Yang, C.S. Liu, X.P. Wang, Q.F. Fang, Y. Xiong, J. Mater. Sci. Technol. 52 (2020) 29-62.
DOI |
| [13] |
R.J. Lancaster, S.P. Jeffs, H.W. Illsley, C. Argyrakis, R.C. Hurst, G.J. Baxter, Mater. Sci. Eng., A 748 (2019) 21-29.
DOI URL |
| [14] |
W. Wang, J. Zhong, X. Zhang, T. Jiang, K. Guan, Theor. Appl. Fract. Mech. 108 (2020) 102627.
DOI URL |
| [15] |
C. Bohnert, N.J. Schmitt, S.M. Weygand, O. Kraft, R. Schwaiger, Int. J. Plast. 81 (2016) 1-17.
DOI URL |
| [16] |
B.S. Li, T.J. Marrow, D.E.J. Armstrong, Scr. Mater. 180 (2020) 77-82.
DOI URL |
| [17] | T. Palacios, J.Y. Pastor, Influence of the notch root radius on the fracture tough- ness of brittle metals: nanostructure tungsten alloy, a case study, Int. J. Refract. Met. Hard Mater. 52 (2015) 44-49. |
| [18] |
R. Carpenter, G. Paulino, Z. Munir, J.J.S.M. Gibeling, Scr. Mater. 43 (2000) 547-552.
DOI URL |
| [19] |
B.S. Kong, J.H. Shin, C. Jang, H.C. Kim, Materials (Basel) 13 (2020) 244.
DOI URL |
| [20] | A.K. Saxena, S. Brinckmann, B. Völker, G. Dehm, C. Kirchlechner, Experimen- tal conditions affecting the measured fracture toughness at the microscale: notch geometry and crack extension measurement, Mater. Des. 191 (2020) 108582. |
| [21] |
J.W. Morris, Science 320 (2008) 1022-1023.
DOI PMID |
| [22] |
Y. Kimura, T. Inoue, F. Yin, K. Tsuzaki, Science 320 (2008) 1057-1060.
DOI PMID |
| [23] |
G. Grimvall, B. Magyari-Köpe, V. Ozoli¸nš, K.A. Persson, Rev. Mod. Phys. 84 (2012) 945-986.
DOI URL |
| [24] |
J.J.W. Morris, Z. Guo, C.R. Krenn, Y.H. Kim, ISIJ Int. 41 (2001) 599-611.
DOI URL |
| [25] |
S. Giusepponi, M. Celino, J. Nucl. Mater. 435 (2013) 52-55.
DOI URL |
| [26] | D. Roundy, C.R. Krenn, M.L. Cohen, J.W. Morris, Philos. Mag. 81 (2001) 1725-1747. |
| [27] |
P. Gumbsch, J. Riedle, A. Hartmaier, H.F. Fischmeister, Science 282 (1998) 1293-1295.
PMID |
| [28] | G.M. Pharr, W.C. Oliver, MRS Bull 17 (1992) 28-33. |
| [29] |
K. Goto, I. Watanabe, T. Ohmura, Int. J. Plast. 116 (2019) 81-90.
DOI URL |
| [30] |
T.-.H. Ahn, C.-.S. Oh, K. Lee, E.P. George, H.N. Han, J. Mater. Res. 27 (2012) 39-44.
DOI URL |
| [31] |
C.A. Schuh, J.K. Mason, A.C. Lund, Nat. Mater. 4 (2005) 617-621.
PMID |
| [32] |
H. Bei, Y.F. Gao, S. Shim, E.P. George, G.M. Pharr, Phys. Rev. B: Condens. Matter 77 (2008) 060103.
DOI URL |
| [33] |
Y. Sato, S. Shinzato, T. Ohmura, S. Ogata, Int. J. Plast. 121 (2019) 280-292.
DOI URL |
| [34] | C.A. Schuh, Mater. Today 9 (2006) 32-40. |
| [35] |
J. Mason, A. Lund, C. Schuh, Phys. Rev. B: Condens. Matter 73 (2006) 054102.
DOI URL |
| [36] |
Y.X. Ye, Z.P. Lu, T.G. Nieh, Scr. Mater. 130 (2017) 64-68.
DOI URL |
| [37] |
S.-.P. Wang, J. Xu, J. Mater. Sci. Technol. 35 (2019) 812-816.
DOI URL |
| [38] |
X. Wu, Y.-.W. You, X.-.S. Kong, J.-.L. Chen, G.-.N. Luo, G.-.H. Lu, C. Liu, Z. Wang, Acta Mater 120 (2016) 315-326.
DOI URL |
| [39] | H.-b. Zhou, J. Shuo, Y. Zhang, G.-h. Lu, Effects of hydrogen on a tungsten grain boundary: a first-principles computational tensile test, Prog. Nat. Sci. 21 (2011) 240-245. |
| [40] | R. Mishnev, N. Dudova, R. Kaibyshev, A. Belyakov, On the Fracture Behavior of a Creep Resistant 10% Cr Steel with High Boron and Low Nitrogen Contents at Low Temperatures, Materials (Basel) 13 (2020) 3. |
| [41] | F. Tioguem, M. Maziere, F. Tankoua, A. Galtier, A.-.F. Gourgues-Lorenzon, Me- chanics&Industry 19 (2018) 107. |
| [42] |
T. Ungár, A. Borbély, Appl. Phys. Lett. 69 (1996) 3173-3175.
DOI URL |
| [43] |
G. Ribárik, J. Gubicza, T. Ungár, Mater. Sci. Eng., A 387-389 (2004) 343-347.
DOI URL |
| [44] |
M. Wilkens, Phys. Status Solidi 2 (1970) 359-370.
DOI URL |
| [45] |
J. Ruzic, I. Watanabe, K. Goto, T. Ohmura, Mater. Trans., JIM 60 (2019) 1411-1415.
DOI URL |
| [46] |
B.-.J. Lee, M.I. Baskes, H. Kim, Y.K. Cho, Phys. Rev. B: Condens. Matter 64 (2001) 184102.
DOI URL |
| [47] |
B.-.J. Lee, W.-.S. Ko, H.-.K. Kim, E.-.H. Kim, Calphad 34 (2010) 510-522.
DOI URL |
| [48] |
G. Kresse, J. Hafner, Phys. Rev. B: Condens. Matter 49 (1994) 14251-14269.
DOI URL |
| [49] |
G. Kresse, J. Furthmüller, Phys. Rev. B: Condens. Matter 54 (1996) 11169-11186.
DOI URL |
| [50] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci 6 (1996) 15-50.
DOI URL |
| [51] |
P.E. Blöchl, Phys. Rev. B: Condens. Matter 50 (1994) 17953-17979.
DOI URL |
| [52] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
| [53] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B: Condens. Matter 13 (1976) 5188-5192.
DOI URL |
| [54] |
F. Birch, J. Geophys. Res. B: Solid Earth 83 (1978) 1257-1268.
DOI URL |
| [55] | F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244-247. |
| [56] | G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901-9904. |
| [57] | G. Henkelman, H. Jónsson, J. Chem. Phys. 113 (2000) 9978-9985. |
| [58] |
A. Togo, F. Oba, I. Tanaka, Phys. Rev. B: Condens. Matter 78 (2008) 134106.
DOI URL |
| [59] |
A. Togo, I. Tanaka, Phys. Rev. B: Condens. Matter 87 (2013) 184104.
DOI URL |
| [60] | B. Grabowski, L. Ismer, T. Hickel, J. Neugebauer, Ab initio up to the melting point: anharmonicity and vacancies in aluminum, Phys. Rev. B: Condens. Mat- ter 79 (2009) 134106. |
| [61] |
J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91 (1987) 4950-4963.
DOI URL |
| [62] |
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18 (2010) 015012.
DOI URL |
| [63] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
| [64] | S. Nosé, J. Chem. Phys. 81 (1984) 511-519. |
| [65] | W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A: At. Mol. Opt. Phys. 31 (1985) 1695-1697. |
| [66] |
T. Ungár, I. Dragomir, Á. Révész, A. Borbély, J. Appl. Crystallogr. 32 (1999) 992-1002.
DOI URL |
| [67] | D. Hull, D.J. Bacon, Butterworth-Heinemann, Oxford, 2001. |
| [68] | K.L. Johnson, K.L. Johnson, Cambridge university press, Cambridge, 1987. |
| [69] | J. Martín, C. Pérez, in: Safety, Reliability and Risk Analysis: Theory, Methods and Applications, CRC Press, London, 2009, pp. 869-874. |
| [70] | T.H. Courtney, Waveland Press, 2005. |
| [71] |
W.R. Tyson, R.A. Ayres, D.F. Stein, Acta Metall. 21 (1973) 621-627.
DOI URL |
| [72] |
D. Scheiber, R. Pippan, P. Puschnig, L. Romaner, Modell. Simul. Mater. Sci. Eng. 24 (2016) 035013.
DOI URL |
| [73] |
B. Gludovatz, S. Wurster, T. Weingärtner, A. Hoffmann, R. Pippan, Philos. Mag. 91 (2011) 3006-3020.
DOI URL |
| [74] |
D. Rupp, S.M. Weygand, Philos. Mag. 90 (2010) 4055-4069.
DOI URL |
| [75] | F. Pukelsheim, Am. Stat. 48 (1994) 88-91. |
| [76] |
Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, Z.W. Zhang, Int. J. Plast. 116 (2019) 203-215.
DOI URL |
| [77] |
Y. Liu, X. Zheng, S. Osovski, A. Srivastava, J. Mech. Phys. Solids 130 (2019) 21-34.
DOI |
| [78] |
K.S. Chan, Mater. Sci. Eng., A 329-331 (2002) 513-522.
DOI URL |
| [79] |
E. Schlangen, E.A.B. Koenders, K. van Breugel, Eng. Fract. Mech. 74 (2007) 18-33.
DOI URL |
| [80] | P.A.T. Olsson, J. Blomqvist, Intergranular fracture of tungsten containing phos- phorus impurities: a first principles investigation, Comput. Mater. Sci 139 (2017) 368-378. |
| [81] |
C. Ren, Z.Z. Fang, L. Xu, J.P. Ligda, J.D. Paramore, B.G. Butler, Acta Mater 162 (2019) 202-213.
DOI URL |
| [82] |
A. Giannattasio, S.G. Roberts, Philos. Mag. 87 (2007) 2589-2598.
DOI URL |
| [83] | A. Seeger, Peierls barriers, kinks, and flow stress: recent progress: dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday, Zeitschrift für Metallkunde 93 (2002) 760-777. |
| [84] |
H.W. Schadler, Acta Metall. 12 (1964) 861-870.
DOI URL |
| [1] | C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩ [J]. J. Mater. Sci. Technol., 2022, 104(0): 224-235. |
| [2] | Huaxin Hu, Xuemei Liu, Jinghong Chen, Hao Lu, Chao Liu, Haibin Wang, Junhua Luan, Zengbao Jiao, Yong Liu, Xiaoyan Song. High-temperature mechanical behavior of ultra-coarse cemented carbide with grain strengthening [J]. J. Mater. Sci. Technol., 2022, 104(0): 8-18. |
| [3] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
| [4] | Yuan Zhang, Guoqi Tan, Mingyang Zhang, Qin Yu, Zengqian Liu, Yanyan Liu, Jian Zhang, Da Jiao, Faheng Wang, Longchao Zhuo, Zhefeng Zhang, Robert O. Ritchie. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96(0): 21-30. |
| [5] | Luqing Cui, Cheng-Han Yu, Shuang Jiang, Xiaoyu Sun, Ru Lin Peng, Jan-Erik Lundgren, Johan Moverare. A new approach for determining GND and SSD densities based on indentation size effect: An application to additive-manufactured Hastelloy X [J]. J. Mater. Sci. Technol., 2022, 96(0): 295-307. |
| [6] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
| [7] | Wensen Huang, Jihua Chen, Hongge Yan, Weijun Xia, Bin Su. High plasticity mechanism of high strain rate rolled Mg-Ga alloy sheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 187-198. |
| [8] | Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates [J]. J. Mater. Sci. Technol., 2022, 105(0): 226-236. |
| [9] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
| [10] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
| [11] | Jiangwei Wang, Anik H.M. Faisal, Xiyao Li, Youran Hong, Qi Zhu, Hongbin Bei, Ze Zhang, Scott X Mao, Christopher R. Weinberger. Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten [J]. J. Mater. Sci. Technol., 2022, 106(0): 33-40. |
| [12] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
| [13] | Dong Wang, Xu Lu, Meichao Lin, Di Wan, Zhiming Li, Jianying He, Roy Johnsen. Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation [J]. J. Mater. Sci. Technol., 2022, 98(0): 118-122. |
| [14] | Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots [J]. J. Mater. Sci. Technol., 2022, 104(0): 163-171. |
| [15] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
