J. Mater. Sci. Technol. ›› 2022, Vol. 102: 97-104.DOI: 10.1016/j.jmst.2021.07.011
• Research Article • Previous Articles Next Articles
Yawei Zhanga, Shuangshuang Lia, Xinwei Tanga, Wei Fanb, Qianqian Lana, Le Lia, Piming Maa, Weifu Donga, Zicheng Wanga,*(), Tianxi Liua,*(
)
Received:
2021-05-19
Revised:
2021-07-09
Accepted:
2021-07-09
Published:
2022-03-10
Online:
2021-08-27
Contact:
Zicheng Wang,Tianxi Liu
About author:
txliu@jiangnan.edu.cn (T. Liu).Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption[J]. J. Mater. Sci. Technol., 2022, 102: 97-104.
Freezing temperature (°C) | GO (mg/mL) | GO:PAA (mg/mL:mg/mL) | |
---|---|---|---|
rGO/PI-50-10c-1:1 | -50 | 10 | 1:1 |
rGO/PI-70-10c-2:1 | -70 | 10 | 2:1 |
rGO/PI-70-10c-1:1 | -70 | 10 | 1:1 |
rGO/PI-70-10c-1:2 | -70 | 10 | 1:2 |
rGO/PI-70-5c-1:1 | -70 | 5 | 1:1 |
rGO/PI-70-20c-1:1 | -70 | 20 | 1:1 |
rGO/PI-90-10c-1:1 | -90 | 10 | 1:1 |
Table 1 Sample composition of rGO/PI composite foams.
Freezing temperature (°C) | GO (mg/mL) | GO:PAA (mg/mL:mg/mL) | |
---|---|---|---|
rGO/PI-50-10c-1:1 | -50 | 10 | 1:1 |
rGO/PI-70-10c-2:1 | -70 | 10 | 2:1 |
rGO/PI-70-10c-1:1 | -70 | 10 | 1:1 |
rGO/PI-70-10c-1:2 | -70 | 10 | 1:2 |
rGO/PI-70-5c-1:1 | -70 | 5 | 1:1 |
rGO/PI-70-20c-1:1 | -70 | 20 | 1:1 |
rGO/PI-90-10c-1:1 | -90 | 10 | 1:1 |
Fig. 1. The cross-sectional SEM images in XY plane of the different foams at the same bidirectional freezing conditions: (a) PI, (b) rGO, and (c) rGO/PI; (d) FTIR, (e) XRD, and (f) TGA curves of GO, PAA, GO/PAA and rGO/PI.
Fig. 2. The cross-sectional SEM images in the XY plane and 2D impedance matching contour maps (|Zin/Zo|) of rGO/PI foams fabricated at the freezing temperature of (a, d)-50 °C, (b, e)-70 °C, and (c, f)-90 °C; (g) attenuation constants, (h) dielectric loss tangent, and (i) Cole-Cole semicircle of the composite foams.
Fig. 3. 3D and 2D reflection loss maps of composite foams fabricated at different freezing temperatures: (a, d) rGO/PI-50-10c-1-1; (b, e) rGO/PI-70-10c-1-1; (c, f) rGO/PI-90-10c-1-1.
Fig. 4. The cross-sectional SEM images in the XY plane, 3D and 2D reflection loss maps of composite foams fabricated at different concentrations: (a, d, g) rGO/PI-70-5c-1-1; (b, e, h) rGO/PI-70-10c-1-1; (c, f, i) rGO/PI-70-20c-1-1.
Fig. 5. The cross-sectional SEM images in XY plane, 3D and 2D reflection loss maps of composite foams fabricated at different filler ratios: (a, d, g) rGO/PI-70-10c-2-1; (b, e, h) rGO/PI-70-10c-1-1; (c, f, i) rGO/PI-70-10c-1-2.
Density (mg/cm3) | Thickness (mm) | RLmin (dB) | EAB (GHz) | Range (GHz) | Ref. | |
---|---|---|---|---|---|---|
MXene/PI | 8.9 | 3.0 | -45.4 | 3.7 | 8.3-12.0 | [ |
MXene/cellulose | 310 | 2.0 | -43.4 | 4.5 | 9.6-14.1 | [ |
Graphene/TPU foam | 310 | 1.6 | -32.0 | 4.7 | / | [ |
GPFA | 38.3 | 3.0 | -49.2 | 6.1 | 9.8-15.9 | [ |
Graphene aerogel | 4.76 | 5.0 | -14.0 | 3.73 | 8.16-11.89 | [ |
PI-GP1/3-rGO | 63.7 | 4.0 | -32.9 | 6.22 | 8.26-14.48 | [ |
TGO@SiC | 72 | 3 | -47.3 | 4.7 | 8.5-13.2 | [ |
GPEGs | 19.8 | 2.35 | -43.2 | 5.3 | 9.6-14.9 | [ |
FeNi@NC/NCNT/N-rGO | 13.1 | 2 | -39.39 | 4.7 | / | [ |
SiCnw@SiC foam | 125 | 2.82 | -52.49 | 5.6 | 9.6-15.2 | [ |
rGO/PI-70-10c-1-1 | 9.10 | 4.75 | -61.29 | 5.51 | 9.25-15.11 | This Work |
Table 2 Microwave absorption properties of carbon-based composite foams reported recently.
Density (mg/cm3) | Thickness (mm) | RLmin (dB) | EAB (GHz) | Range (GHz) | Ref. | |
---|---|---|---|---|---|---|
MXene/PI | 8.9 | 3.0 | -45.4 | 3.7 | 8.3-12.0 | [ |
MXene/cellulose | 310 | 2.0 | -43.4 | 4.5 | 9.6-14.1 | [ |
Graphene/TPU foam | 310 | 1.6 | -32.0 | 4.7 | / | [ |
GPFA | 38.3 | 3.0 | -49.2 | 6.1 | 9.8-15.9 | [ |
Graphene aerogel | 4.76 | 5.0 | -14.0 | 3.73 | 8.16-11.89 | [ |
PI-GP1/3-rGO | 63.7 | 4.0 | -32.9 | 6.22 | 8.26-14.48 | [ |
TGO@SiC | 72 | 3 | -47.3 | 4.7 | 8.5-13.2 | [ |
GPEGs | 19.8 | 2.35 | -43.2 | 5.3 | 9.6-14.9 | [ |
FeNi@NC/NCNT/N-rGO | 13.1 | 2 | -39.39 | 4.7 | / | [ |
SiCnw@SiC foam | 125 | 2.82 | -52.49 | 5.6 | 9.6-15.2 | [ |
rGO/PI-70-10c-1-1 | 9.10 | 4.75 | -61.29 | 5.51 | 9.25-15.11 | This Work |
[1] |
L. Wang, Z.L. Ma, L.X. Chen, Y.L. Zhang, D.P. Cao, J.W. Gu, SusMat (2021), doi: 10. 1002/sus2.21.
DOI |
[2] |
H. Chen, B. Zhao, Z.F. Zhao, H.F. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, J. Mater. Sci. Technol. 47 (2020) 216-222.
DOI URL |
[3] | X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, K.P. Ruan, Y.G. Li, S.M. Zhang, J.L. Zhang, J. Kong, J.W. Gu, Compos., Part A 128 (2020) 105670. |
[4] |
C. Chen, S.F. Zeng, X.C. Han, Y.Q. Tan, W.L. Feng, H.H. Shen, S.M. Peng, H.B. Zhang, J. Mater. Sci. Technol. 54 (2020) 223-229.
DOI |
[5] | P. Song, B. Liu, H. Qiu, X.T. Shi, D.P. Cao, J.W. Gu, Compos. Commun. 24 (2021) 100653. |
[6] |
L. Pu, S.S. Li, Y.W. Zhang, H.Y. Zhu, W. Fan, P.M. Ma, W.F. Dong, Z.C. Wang, T.X. Liu, J. Mater. Chem. C 9 (2021) 2086-2094.
DOI URL |
[7] | P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano-Mi-cro Lett. 13 (2021) 91. |
[8] |
Z.C. Wang, R.B. Wei, J.W. Gu, H. Liu, C.T. Liu, C.J. Luo, J. Kong, Q. Shao, N. Wang, Z.H. Guo, X.B. Liu, Carbon 139 (2018) 1126-1135.
DOI URL |
[9] | Y. Zhou, S.J. Wang, D.S. Li, L. Jiang, Compos., Part B 213 (2021) 108701. |
[10] | X. Zhang, X.Y. Zhao, T.T. Xue, F. Yang, W. Fan, T.X. Liu, Chem. Eng. J. 385 (2020) 123963. |
[11] |
W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, H.F. Ju, Carbon 77 (2014) 130-142.
DOI URL |
[12] |
W.L. Song, L.Z. Fan, M.S. Cao, M.M. Lu, C.Y. Wang, J. Wang, T.T. Chen, Y. Li, Z.L. Hou, J. Liu, Y.P. Sun, J. Mater. Chem. C 2 (2014) 5057-5064.
DOI URL |
[13] |
Z.C. Wang, R.B. Wei, X.B. Liu, ACS Appl. Mater. Interfaces 9 (2017) 22408-22419.
DOI URL |
[14] |
W.W. Gao, N.F. Zhao, T. Yu, J.B. Xi, A.R. Mao, M.Q. Yuan, H. Bai, C. Gao, Carbon 157 (2020) 570-577.
DOI URL |
[15] | Y. Dai, X.Y. Wu, Z.S. Liu, H.B. Zhang, Z.Z. Yu, Compos., Part B 200 (2020) 108263. |
[16] | K.P. Ruan, Y.Q. Guo, Y.S. Tang, Y.L. Zhang, J.N. Zhang, M.K. He, J. Kong, J.W. Gu, Compos. Commun. 10 (2018) 68-72. |
[17] | C. Daniela, D.V.K. Marcano, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4 (2010) 4 806-4 814. |
[18] | K.P. Ruan, Y.Q. Guo, C.Y. Lu, X.T. Shi, T.B. Ma, Y.L. Zhang, J. Kong, J.W. Gu, Re-search 2021 (2021) 8438614. |
[19] |
J. Li, G.C. Song, J.R. Yu, Y. Wang, J. Zhu, Z.M. Hu, Nanomaterials 7 (2017) 395.
DOI URL |
[20] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[21] |
B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu, W. Lu, Nano-Micro Lett. 12 (2020) 55.
DOI URL |
[22] | Z.Y. Jiang, H.X. Si, X. Chen, H.M. Liu, L. Zhang, Y.H. Zhang, C.H. Gong, J.W. Gu, Compos. Commun. 22 (2020) 100503. |
[23] | R.W. Shu, G.Y. Zhang, C. Zhang, Y. Wu, J.B. Zhang, Adv. Electron. Mater. 7 (2021) 20 010 01. |
[24] |
R.W. Shu, Z.L. Wan, J.B. Zhang, Y. Wu, Y. Liu, J.J. Shi, M.D. Zheng, ACS Appl. Mater. Interfaces 12 (2020) 4689-4698.
DOI URL |
[25] | S. Dong, P.T. Hu, X.T. Li, C.Q. Hong, X.H. Zhang, J.C. Han, Chem. Eng. J. 398 (2020) 125588. |
[26] |
R.W. Shu, J.B. Zhang, Y. Wu, Z.L. Wan, X.H. Li, Nanoscale 13 (2021) 4 485-4 495.
DOI URL |
[27] | C.X. Wang, B.B. Wang, X. Cao, J.W. Zhao, L. Chen, L.G. Shan, H.N. Wang, G.L. Wu, Compos., Part B 205 (2021) 108529. |
[28] |
X.N. Chen, Y. Zhang, L. Tao, Q.Q. Nie, F.C. Meng, S.B. Zhu, L.Y. Cui, R.X. Huang, Carbon 164 (2020) 224-234.
DOI URL |
[29] |
B. Zhao, J.S. Deng, C.X. Zhao, C.D. Wang, Y.G. Chen, M. Hamidinejad, R.S. Li, C.B. Park, J. Mater. Chem. C 8 (2020) 58-70.
DOI URL |
[30] |
J.S. Hua, W.J. Ma, X.Y. Liu, Q.X. Zhuang, Z.Y. Wu, H. Huang, S.L. Lin, J. Mater. Chem. C 8 (2020) 16489-16497.
DOI URL |
[31] |
T.T. Bai, Y. Guo, D.D. Wang, H. Liu, G. Song, Y.M. Wang, Z.H. Guo, C.T. Liu, C.Y. Shen, J. Mater. Chem. A 9 (2021) 5566-5577.
DOI URL |
[32] | J. Zhao, J.L. Zhang, L. Wang, J.K. Li, T. Feng, J.C. Fan, L.X. Chen, J.W. Gu, Compos. Commun. 22 (2020) 100486. |
[33] | J. Liu, H.B. Zhang, X. Xie, R. Yang, Z.S. Liu, Y.F. Liu, Z.Z. Yu, Small 14 (2018) 1802479. |
[34] |
Y. Jiang, X. Xie, Y. Chen, Y. Liu, R. Yang, G. Sui, J. Mater. Chem. C 6 (2018) 8679-8687.
DOI URL |
[35] |
Y. Gao, C. Wang, J. Li, S. Guo, Compos., Part A 117 (2019) 65-75.
DOI URL |
[36] |
C. Zhang, Y. Chen, H. Li, R. Tian, H. Liu, ACS Omega 3 (2018) 5735-5743.
DOI URL |
[37] |
Y. Jiang, Y. Chen, Y.J. Liu, G.X. Sui, Chem. Eng. J. 337 (2018) 522-531.
DOI URL |
[38] |
H.M. Ji, J.H. Li, J.J. Zhang, Y. Yan, Compos., Part A 123 (2019) 158-169.
DOI URL |
[39] |
J. Xu, X. Zhang, H.R. Yuan, S. Zhang, C.L. Zhu, X.T. Zhang, Y.J. Chen, Carbon 159 (2020) 357-365.
DOI URL |
[40] |
K. Su, Y. Wang, K.X. Hu, X. Fang, J. Yao, Q. Li, J. Yang, ACS Appl. Mater. Interfaces 13 (2021) 22017-22030.
DOI URL |
[1] | Q. Yan, B. Chen, L. Cao, K.Y. Liu, S. Li, L. Jia, K. Kondoh, J.S. Li. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in-situ formed carbides [J]. J. Mater. Sci. Technol., 2022, 96(0): 85-93. |
[2] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[3] | Weiting Li, Xudong Yang, Kunming Yang, Chunnian He, Junwei Sha, Chunsheng Shi, Yunhui Mei, Jiajun Li, Naiqin Zhao. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 60-70. |
[4] | Bin Sun, Zili Zhang, Jing Xu, Yanpeng Lv, Yang Jin. Composite separator based on PI film for advanced lithium metal batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 264-271. |
[5] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[6] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
[7] | Weicheng Chen, Xianghui Liang, Wanhui Han, Shuangfeng Wang, Xuenong Gao, Zhengguo Zhang, Yutang Fang. 3D shape-stable temperature-regulated macro-encapsulated phase change material: KAl(SO4)2•12H2O-C2H2O4•2H2O-CO(NH2)2 eutectic/polyurethane foam as core and carbon modified silicone resin as shell [J]. J. Mater. Sci. Technol., 2022, 100(0): 27-35. |
[8] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
[9] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[10] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[11] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[12] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
[13] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
[14] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[15] | Zhou Zhou, Chaoying Ding, Wenchao Peng, Yang Li, Fengbao Zhang, Xiaobin Fan. One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries [J]. J. Mater. Sci. Technol., 2021, 80(0): 13-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||