J. Mater. Sci. Technol. ›› 2022, Vol. 102: 1-7.DOI: 10.1016/j.jmst.2021.05.069
• Research Article • Next Articles
Huaze Zhua,b, Yongqiang Yanga,b,*(
), Yuyang Kanga,b, Ping Niuc, Xiangdong Kanga,b, Zhiqing Yanga,b, Hengqiang Yea,d, Gang Liua,b,*(
)
Received:2021-05-11
Revised:2021-05-20
Accepted:2021-05-20
Published:2022-03-10
Online:2021-08-06
Contact:
Yongqiang Yang,Gang Liu
About author:gangliu@imr.ac.cn (G. Liu).Huaze Zhu, Yongqiang Yang, Yuyang Kang, Ping Niu, Xiangdong Kang, Zhiqing Yang, Hengqiang Ye, Gang Liu. Strong interface contact between NaYF4:Yb,Er and CdS promoting photocatalytic hydrogen evolution of NaYF4:Yb,Er/CdS composites[J]. J. Mater. Sci. Technol., 2022, 102: 1-7.
Fig. 2. (a) XRD patterns of NaYF4:Yb,Er, NaYF4:Yb,Er/CdS and NaYF4:Yb,Er/CdS-380, (b) the patterns in the diffraction region of 23 to 29.5 degree in (a).
Fig. 4. (a) UV-visible-NIR absorption spectra and (b) photoluminescence (PL) spectra of NaYF4:Yb,Er/CdS and NaYF4:Yb,Er/CdS-380; (c) UV-visible-NIR absorption spectra and (d) PL spectra of NaYF4:Yb,Er/CdS annealed at different temperatures.
Fig. 5. Photocatalytic hydrogen evolution rates of different samples under the light irradiation of (a, c) λ > 400 nm and (b, d) λ > 600 nm. CdS and NaYF4:Yb,Er are denoted as CS and NF in the figures, respectively.
| [1] |
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
DOI PMID |
| [2] |
R. Geyer, J.R. Jambeck, K.L. Law, Sci. Adv. 3 (2017) e1700782.
DOI URL |
| [3] |
T. Boningari, S.N.R. Inturi, M. Suidan, P.G. Smirniotis, J. Mater. Sci. Technol. 34 (2018) 1494-1502.
DOI URL |
| [4] |
X.T. Liu, S.N. Gu, Y.J. Zhao, G.W. Zhou, W.J. Li, J. Mater. Sci. Technol. 56 (2020) 45-68.
DOI URL |
| [5] |
X.T. Hong, Z.P. Wang, W.M. Cai, F. Lu, J. Zhang, Y.Z. Yang, N. Ma, Y.J. Liu, Chem. Mater. 17 (2005) 1548-1552.
DOI URL |
| [6] |
G. Liu, C. Sun, X. Yan, L. Cheng, Z. Chen, X. Wang, L. Wang, S.C. Smith, G.Q. Lu, H.-M. Cheng, J. Mater. Chem. 19 (2009) 2822-2829.
DOI URL |
| [7] |
G. Liu, L.-C. Yin, J. Wang, P. Niu, C. Zhen, Y. Xie, H.-M. Cheng, Energy Environ. Sci. 5 (2012) 9603-9610.
DOI URL |
| [8] |
M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sust. Energ. Rev. 11 (2007) 401-425.
DOI URL |
| [9] |
S. Gao, W.Y. Yang, J. Xiao, B. Li, Q. Li, J. Mater. Sci. Technol. 35 (2019) 610-614.
DOI URL |
| [10] |
T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 63 (2002) 1909-1920.
DOI URL |
| [11] |
R. Wang, S. Ni, G. Liu, X. Xu, Appl. Catal. B-Environ. 225 (2018) 139-147.
DOI URL |
| [12] | G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, J. Mater. Chem. 20 (2010) 5301-5309. |
| [13] |
J. Zhang, Y. Wu, M. Xing, S.A.K. Leghari, S. Sajjad, Energy Environ. Sci. 3 (2010) 715-726.
DOI URL |
| [14] |
J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, Nano Lett 11 (2011) 4774-4779.
DOI PMID |
| [15] |
R. Georgekutty, M.K. Seery, S.C. Pillai, J. Phys. Chem. C 112 (2008) 13563-13570.
DOI URL |
| [16] |
S. Ikeda, C. Abe, T. Torimoto, B. Ohtani, Electrochemistry 70 (2002) 4 42-4 45.
DOI URL |
| [17] |
T. Cai, Y. Liu, L. Wang, S. Zhang, Y. Zeng, J. Yuan, J. Ma, W. Dong, C. Liu, S. Luo, Appl. Catal. B-Environ. 208 (2017) 1-13.
DOI URL |
| [18] |
A. Das, K. Bae, W. Park, Nanophotonics 9 (2020) 1359-1371.
DOI URL |
| [19] |
C. Li, F. Wang, J. Zhu, J.C. Yu, Appl. Catal. B-Environ. 100 (2010) 433-439.
DOI URL |
| [20] |
Z. Li, C. Li, Y. Mei, L. Wang, G. Du, Y. Xiong, Nanoscale 5 (2013) 3030-3036.
DOI URL |
| [21] |
W. Wang, Y. Li, Z. Kang, F. Wang, J.C. Yu, Appl. Catal. B-Environ. 182 (2016) 184-192.
DOI URL |
| [22] | D.-X. Xu, Z.W. Lian, M.L. Fu, B. Yuan, J.W. Shi, Cui H.J, Appl. Catal. B-Environ. 142 (2013) 377-386. |
| [23] |
Z. Xu, M. Quintanilla, F. Vetrone, A.O. Govorov, M. Chaker, D. Ma, Adv. Funct. Mater. 25 (2015) 2950-2960.
DOI URL |
| [24] | W.F. Yang, X.Y. Li, D.Z. Chi, H.J. Zhang, X.G. Liu, Nanotechnology 25 (2014) 482001. |
| [25] |
K.L. Zhang, M. Zhou, C.L. Yu, K. Yang, X.X. Li, S. Yang, J. Guan, W.X. Dai, W.Y. Huang, J. Mater. Sci. 55 (2020) 10435-10452.
DOI URL |
| [26] |
F. Wang, X.G. Liu, Chem. Soc. Rev. 38 (2009) 976-989.
DOI URL |
| [27] |
X. Guo, W. Song, C. Chen, W. Di, W. Qin, Phys. Chem. Chem. Phys. 15 (2013) 14681-14688.
DOI URL |
| [28] |
S. Ullah, C. Hazra, E.P. Ferreira-Neto, T.C. Silva, U.P. Rodrigues-Filho, S.J.L. Ribeiro, CrystEngComm 19 (2017) 3465-3475.
DOI URL |
| [29] |
Z. Fan, T. Wu, X. Xu, Sci. Rep. 7 (2017) 13833.
DOI URL |
| [30] |
Y. Ma, H. Liu, Z. Han, L. Yang, J. Liu, J. Mater. Chem. A 3 (2015) 14642-14650.
DOI URL |
| [31] |
W. Feng, L. Zhang, Y. Zhang, Y. Yang, Z. Fang, B. Wang, S. Zhang, P. Liu, J. Mater. Chem. A 5 (2017) 10311-10320.
DOI URL |
| [32] |
F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Nature 463 (2010) 1061-1065.
DOI URL |
| [33] |
O. Zelayaangel, A.E. Esparzagarcia, C. Falcony, R. Lozadamorales, R. Ramirezbon, Solid State Commun 94 (1995) 81-85.
DOI URL |
| [34] | T. Lee, K. Shimura, D. Kim, Phy. Chem. Chem. Phys. 20 (2018) 11954-11958. |
| [35] |
Z.L. Qiu, J. Shu, D.P. Tang, Anal. Chem. 90 (2018) 1021-1028.
DOI URL |
| [36] |
Y.N. Tang, W.H. Di, X.S. Zhai, R.Y. Yang, W.P. Qin, ACS Catal 3 (2013) 405-412.
DOI URL |
| [37] |
J.S. Lee, K.H. You, C.B. Park, Adv. Mater. 24 (2012) 1084-1088.
DOI URL |
| [38] |
M.Y. Ding, C.H. Lu, W.J. Huang, C.F. Jiang, Y.R. Ni, Z.Z. Xu, J. Inorg. Mater. 28 (2013) 146-152.
DOI URL |
| [39] |
V. Singh, P.K. Sharma, P. Chauhan, Mater. Charact. 62 (2011) 43-52.
DOI URL |
| [40] |
W. Gao, Y. Wu, G. Lu, Catal. Sci. Technol. 10 (2020) 2389-2397.
DOI URL |
| [41] | W. Gao, B. Tian, W. Zhang, X. Zhang, Y. Wu, G. Lu, Appl. Catal. B-Environ. 257 (2019) 117908. |
| [1] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
| [2] | Ning Wang, Jing Wang, Mengnan Liu, Chengyue Ge, Baorong Hou, Yanli Ning, Yiteng Hu. Preparation of Ag@CuFe2O4@TiO2 nanocomposite films and its performance of photoelectrochemical cathodic protection [J]. J. Mater. Sci. Technol., 2022, 100(0): 12-19. |
| [3] | Yingzhi Jiao, Siyao Cheng, Fan Wu, Jiaoyan Shi, Aming Xie, Xufei Zhu, Wei Dong. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 100(0): 206-215. |
| [4] | Nikolaus Jäger, Michael Meindlhumer, Michal Zitek, Stefan Spor, Hynek Hruby, Farwah Nahif, Jaakko Julin, Martin Rosenthal, Jozef Keckes, Christian Mitterer, Rostislav Daniel. Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings [J]. J. Mater. Sci. Technol., 2022, 100(0): 91-100. |
| [5] | Chenglong Hu, Rida Zhao, Sajjad Ali, Yuanhong Wang, Shengyang Pang, Jian Li, Sufang Tang. Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process [J]. J. Mater. Sci. Technol., 2022, 101(0): 118-127. |
| [6] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
| [7] | Mian Zahid Hussain, Zhuxian Yang, Ahmed M.E. Khalil, Shahzad Hussain, Saif Ullah Awan, Quanli Jia, Roland A. Fischer, Yanqiu Zhu, Yongde Xia. Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis [J]. J. Mater. Sci. Technol., 2022, 101(0): 49-59. |
| [8] | Weiting Li, Xudong Yang, Kunming Yang, Chunnian He, Junwei Sha, Chunsheng Shi, Yunhui Mei, Jiajun Li, Naiqin Zhao. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets [J]. J. Mater. Sci. Technol., 2022, 101(0): 60-70. |
| [9] | Bin Sun, Zili Zhang, Jing Xu, Yanpeng Lv, Yang Jin. Composite separator based on PI film for advanced lithium metal batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 264-271. |
| [10] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
| [11] | Haicheng Wang, Huating Wu, Huifang Pang, Yuhua Xiong, Shuwang Ma, Yuping Duan, Yanglong Hou, Changhui Mao. Lightweight PPy aerogel adopted with Co and SiO2 nanoparticles for enhanced electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 97(0): 213-222. |
| [12] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
| [13] | Young-Kyun Kim, Min-Chul Kim, Kee-Ahn Lee. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97(0): 10-19. |
| [14] | Meifeng Wang, Yiru Qin, Wei Shao, ZhiWang Cai, Xiaoyu Zhao, Yongjun Hu, Tao Zhang, Sheng Li, Mark T. Swihart, Yang Liu, Wei Wei. Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity [J]. J. Mater. Sci. Technol., 2022, 97(0): 223-228. |
| [15] | Yuan Zhang, Guoqi Tan, Mingyang Zhang, Qin Yu, Zengqian Liu, Yanyan Liu, Jian Zhang, Da Jiao, Faheng Wang, Longchao Zhuo, Zhefeng Zhang, Robert O. Ritchie. Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales [J]. J. Mater. Sci. Technol., 2022, 96(0): 21-30. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
