J. Mater. Sci. Technol. ›› 2021, Vol. 93: 244-253.DOI: 10.1016/j.jmst.2021.03.063
• Original article • Previous Articles
Xin Donga, Ning Lia,b, Yanan Zhoua, Huabei Penga, Yuntao Qua, Qi Suna, Haojiang Shia, Rui Lib, Sheng Xuc, Jiazhen Yana,*(
)
Accepted:2021-01-13
Published:2021-12-10
Online:2021-12-10
Contact:
Jiazhen Yan
About author:*E-mail address: yanjiazhen@scu.edu.cn (J. Yan).Xin Dong, Ning Li, Yanan Zhou, Huabei Peng, Yuntao Qu, Qi Sun, Haojiang Shi, Rui Li, Sheng Xu, Jiazhen Yan. Grain boundary character and stress corrosion cracking behavior of Co-Cr alloy fabricated by selective laser melting[J]. J. Mater. Sci. Technol., 2021, 93: 244-253.
Fig. 2. (a) OM and (b-d) SEM image of As-SLM Co-Cr alloy at low and high magnification. (e-f) TEM image of As-SLM Co-Cr alloy. The inset in (e) is the corresponding selected area electron diffraction (SAED) patterns
Fig. 3. EBSD results of As-SLM Co-Cr alloy: (a) Phase map, (b) Grain boundary (GB) map, (c) Kernel average misorientation (KAM) map, (d) Inverse pole figure (IPF), and (e) Pole figure (PF).
| Type | Σ1 | Σ3 | Σ9 | Σ27 | RB |
|---|---|---|---|---|---|
| Percentage | 73.6 | 0.845 | 0.194 | 0.093 | 25.268 |
Table 1. Grain boundary character of As-SLM Co-Cr alloy. (length %).
| Type | Σ1 | Σ3 | Σ9 | Σ27 | RB |
|---|---|---|---|---|---|
| Percentage | 73.6 | 0.845 | 0.194 | 0.093 | 25.268 |
Fig. 4. (a) OM and (b) SEM image of GBE Co-Cr alloy, respectively. (c) TEM image and (d) high-resolution transmission electron microscopy (HRTEM) image of GBE Co-Cr alloy. The insets in (c) and (d) are the corresponding SAED image. The yellow circle in (c) is the corresponding selected area for SAED.
Fig. 5. EBSD results of GBE Co-Cr alloy: (a) Phase map, (b) Grain boundary (GB) map, (c) Kernel average misorientation (KAM) map, (d) Inverse pole figure (IPF) map, and (e) Pole figure (PF) map.
| Type | Σ1 | Σ3 | Σ9 | Σ27 | RB |
|---|---|---|---|---|---|
| Percentage | 3.98 | 72 | 6.63 | 2.84 | 14.55 |
Table 2. Grain boundary character of GBE Co-Cr alloy. (length %).
| Type | Σ1 | Σ3 | Σ9 | Σ27 | RB |
|---|---|---|---|---|---|
| Percentage | 3.98 | 72 | 6.63 | 2.84 | 14.55 |
| Conditions | UTS (MPa) | Elongation (%) |
|---|---|---|
| 0.9% NaCl | 1074.96(10.15) | 16.51(1.97) |
| Air | 1070.29(4.81) | 10.96(0.56) |
Table 3. Mean value of SSRT results of GBE Co-Cr alloy in 0.9% NaCl solution and air.
| Conditions | UTS (MPa) | Elongation (%) |
|---|---|---|
| 0.9% NaCl | 1074.96(10.15) | 16.51(1.97) |
| Air | 1070.29(4.81) | 10.96(0.56) |
Fig. 7. Fractured surface morphology of GBE Co-Cr alloy in (a-b) 0.9% NaCl solution and (d-e) air conditions after SSRT. The side surface of GBE Co-Cr alloy in (c) 0.9% NaCl solution and (f) air conditions after SSRT. KAM maps in the near fractured surface of GBE Co-Cr alloy in (g) 0.9% NaCl solution and (h) air after SSRT. The red circles in 7a and 7d are the corresponding selected magnification area for 7b and 7e, respectively.
Fig. 8. OM image of the secondary cracks of GBE Co-Cr alloy after testing in (a) 0.9% NaCl solution and (b) air, respectively; (c) SEM image, (d) IPF maps, (e) KAM maps and (f) phase maps of typical secondary cracks area after testing in 0.9% NaCl solution. The red arrow in Fig. 8a indicates the loading direction in the SSRT. The red rectangle in the Fig. 8c is the selected test zone for EBSD.
Fig. 9. (a-d) TEM and (e-f) HRTEM image of GBE Co-Cr alloy after SSRT in 0.9% NaCl solution. The insets in 9c, 9e, and 9f are the corresponding SAED patterns, respectively. The yellow circles in 9c and 9e are the corresponding selected area for SAED.
| [1] | T. Watanabe, J. Mater. Sci., 46(2011), pp. 4095-4115. |
| [2] | A. King, G. Johnson, D. Engelberg, W. Ludwig, J. Marrow, Science, 321 (5887)(2008), pp. 382-385. |
| [3] | A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, V.K. Vasudevan, Acta Mater, 113(2016), pp. 180-193. |
| [4] | Y. Pan, B.L. Adams, T. Olson, N. Panayotou, Acta Mater, 44 (12)(1996), pp. 4685-4695. |
| [5] | E.M. Lehockey, G. Palumbo, Mater. Sci. Eng. A, 237(1997), pp. 168-172. |
| [6] | T. Watanabe, Res. Mech., 11(1984), pp. 47-84. |
| [7] | V.Y. Gertsman, S.M. Bruemmer, Acta Mater, 49(2001), pp. 1589-1598. |
| [8] | C. Hu, S. Xia, H. Li, T. Liu, B. Zhou, W. Chen, N. Wang, Corros. Sci., 53(2001), pp. 1880-1886 |
| [9] | T. Liu, S. Xia, Q. Bai, B. Zhou, L. Zhang, Y. Lu, T. Shoji, J. Nucl. Mater., 498(2018), pp. 290-299. |
| [10] | S. Rahimi, D.L. Engelberg, J.A. Duff, T.J. Marrow, J. Microsc., 233(2009), pp. 423-431. |
| [11] | V. Randle, Mater. Charact., 47(2001), pp. 411-416. |
| [12] | V. Randle, Acta Mater, 46(1997), pp. 1459-1480. |
| [13] | V. Randle, Scripta Mater, 54(2006), pp. 1011-1015. |
| [14] | M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai, Acta Mater, 54(2006), pp. 5179-5184. |
| [15] | E.M. Lehockey, A.M. Brennenstuhl, I. Thompson, Corros. Sci., 46(2004), pp. 2383-2404. |
| [16] | A. Telang, A.S. Gill, D. Tammana, X. Wen, M. Kumar, S. Teysseyre, S.R. Mannava, D. Qian, V.K. Vasudevan, Mater. Sci. Eng. A, 648(2015), pp. 280-288. |
| [17] | V. Randle, Acta Mater, 52(2004), pp. 4067-4081. |
| [18] | V. Randle, M. Coleman, Acta Mater, 47(1999), pp. 4187-4196. |
| [19] | M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Acta Mater, 50(2002), pp. 2331-2341. |
| [20] | S. Kobayashi, R. Kobayashi, T. Watanabe, Acta Mater, 102(2016), pp. 397-405. |
| [21] | T. Liu, S. Xia, H. Li, B. Zhou, Q. Bai, Mater. Lett., 133(2014), pp. 97-100. |
| [22] | J. Lind, S.F. Li, M. Kumar, Acta Mater, 114(2016), pp. 43-53. |
| [23] | S. Yang, Z. Wang, H. Kokawa, Y.S. Sato, Mater. Sci. Eng. A, 474(2008), pp. 112-119. |
| [24] | D.L. Bourell, Annu. Rev. Mater. Res., 46(2016), pp. 3.1-3.18. |
| [25] | L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today, 21(2018), pp. 354-361. |
| [26] | X. Dong, Q. Sun, Y. Zhou, Y. Qu, H. Shi, B. Zhang, S. Xu, W. Liu, N. Li, J. Yan, Corros. Sci., 170(2020), Article 108688. |
| [27] | X. Dong, Y. Zhou, Q. Sun, Y. Qu, H. Shi, W. Liu, H. Peng, B. Zhang, S. Xu, J. Yan, N. Li, Mater. Sci. Eng. A, 795(2020), Article 140000. |
| [28] | D.G. Brandon, Acta Metall, 14(1966), pp. 1479-1484. |
| [29] | A. Zebowicz, K. Matus, W. Pakieła, G. Matula, M. Pawlyta, Crystals, 10 (2020), p.197. |
| [30] | Q. Chen, G.A. Thouas, Mater. Sci. Eng. R, 87(2015), pp. 1-57. |
| [31] | S. Jafari, R.K.S. Raman, C.H.J. Davies, J. Hofstetter, P.J. Uggowitzer, J.F. Löffler, J. Mech. Behav. Biomed., 65(2017), pp. 634-643. |
| [32] | M. Mori, K. Yamanaka, S. Sato, S. Tsubaki, K. Satoh, M. Kumagai, M. Imafuku, T. Shobu, A. Chiba, J. Mech. Behav. Biomed., 90(2019), pp. 523-529. |
| [33] | D. Wei, A. Anniyaer, Y. Koizumi, K. Aoyagi, M. Nagasako, H. Kato, A. Chiba, Addit. Manuf., 28(2019), pp. 215-227. |
| [34] | A. Takaichi, Y. Kajima, N. Kittikundecha, H.L. Htat, H.H.W. Cho, T. Hanawa, T. Yoneyama, N. Wakabayashi, J. Mech. Behav. Biomed., 102(2020), Article 103496. |
| [35] | Z.W. Chen, M.A.L. Phan, K. Darvish, J. Mater. Sci., 52(2017), pp. 7415-7427. |
| [36] | S. Dash, N. Brown, Acta Metall, 11(1963), pp. 1067-1075. |
| [37] | K. Yamanaka, M. Mori, S. Sato, A. Chiba, Sci. Rep., 7 (2017), p.10808. |
| [38] | K. Yamanaka, M. Mori, A. Chiba, Metall. Mater. Trans. A, 43(2012), pp. 4875-4887. |
| [39] | L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, R.O. Ritchie, Science, 368 (6497)(2020), pp. 1347-1352. |
| [40] | R.O. Ritchie, Mater. Sci. Eng. A, 103(1988), pp. 15-28. |
| [41] | Y. Koizumi, S. Suzuki, K. Yamanaka, B.S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto, A. Chiba, Acta Mater, 61(2013), pp. 1648-1661. |
| [42] | S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang1, R.O. Ritchie, Q. Yu, Nat. Commun., 11 (2020), p.286. |
| [1] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
| [2] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
| [3] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
| [4] | Alireza Nouri, Anahita Rohani Shirvan, Yuncang Li, Cuie Wen. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review [J]. J. Mater. Sci. Technol., 2021, 94(0): 196-215. |
| [5] | Yong Li, Zhiyong Liu, Endian Fan, Yunhua Huang, Yi Fan, Bojie Zhao. Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater [J]. J. Mater. Sci. Technol., 2021, 64(0): 141-152. |
| [6] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
| [7] | Mingyue Wen, Yuan Sun, Jinjiang Yu, Shulin Yang, Xingyu Hou, Yanhong Yang, Xiaofeng Sun, YiZhou Zhou. Amelioration of weld-crack resistance of the M951 superalloy by engineering grain boundaries [J]. J. Mater. Sci. Technol., 2021, 78(0): 260-267. |
| [8] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
| [9] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
| [10] | Y.L. Qi, L. Zhao, X. Sun, H.X. Zong, X.D. Ding, F. Jiang, H.L. Zhang, Y.K. Wu, L. He, F. Liu, S.B. Jin, G. Sha, J. Sun. Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries [J]. J. Mater. Sci. Technol., 2021, 86(0): 271-284. |
| [11] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
| [12] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
| [13] | Meiying Lv, Xuchao Chen, Zhenxin Li, Min Du. Effect of sulfate-reducing bacteria on hydrogen permeation and stress corrosion cracking behavior of 980 high-strength steel in seawater [J]. J. Mater. Sci. Technol., 2021, 92(0): 109-119. |
| [14] | Liang Deng, Long Zhang, Konrad Kosiba, René Limbach, Lothar Wondraczek, Gang Wang, Dongdong Gu, Uta Kühn, Simon Pauly. CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 81(0): 139-150. |
| [15] | Zhong-Zheng Jin, Min Zha, Hai-Long Jia, Pin-Kui Ma, Si-Qing Wang, Jia-Wei Liang, Hui-Yuan Wang. Balancing the strength and ductility of Mg-6Zn-0.2Ca alloy via sub-rapid solidification combined with hard-plate rolling [J]. J. Mater. Sci. Technol., 2021, 81(0): 219-228. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
