J. Mater. Sci. Technol. ›› 2021, Vol. 93: 232-243.DOI: 10.1016/j.jmst.2021.03.014
• Original article • Previous Articles Next Articles
Changgang Wanga, Rongyao Maa,*(
), Yangtao Zhoua, Yang Liua, Enobong Felix Daniel, Xiaofang Lic, Pei Wanga,*(
), Junhua Donga,*(
), Wei Kec
Accepted:2020-12-25
Published:2021-12-10
Online:2021-12-10
Contact:
Rongyao Ma,Pei Wang,Junhua Dong
About author:jhdong@imr.ac.cn (J. Dong).Changgang Wang, Rongyao Ma, Yangtao Zhou, Yang Liu, Enobong Felix Daniel, Xiaofang Li, Pei Wang, Junhua Dong, Wei Ke. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel[J]. J. Mater. Sci. Technol., 2021, 93: 232-243.
| C | Si | Mn | Cr | Ni | Mo | Al | S | O | RE (La+Ce) | Fe | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| BASE | 0.035 | 0.31 | 0.68 | 12.41 | 3.98 | 0.49 | 0.017 | 0.003 | 0.0012 | - | Bal. |
| 0.021REM | 0.037 | 0.32 | 0.70 | 12.37 | 3.96 | 0.51 | 0.015 | 0.003 | 0.0015 | 0.021 | Bal. |
| 0.058REM | 0.044 | 0.32 | 0.71 | 12.34 | 3.99 | 0.50 | 0.019 | 0.003 | 0.0013 | 0.058 | Bal. |
Table 1. Chemical compositions of the stainless steels (wt.%).
| C | Si | Mn | Cr | Ni | Mo | Al | S | O | RE (La+Ce) | Fe | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| BASE | 0.035 | 0.31 | 0.68 | 12.41 | 3.98 | 0.49 | 0.017 | 0.003 | 0.0012 | - | Bal. |
| 0.021REM | 0.037 | 0.32 | 0.70 | 12.37 | 3.96 | 0.51 | 0.015 | 0.003 | 0.0015 | 0.021 | Bal. |
| 0.058REM | 0.044 | 0.32 | 0.71 | 12.34 | 3.99 | 0.50 | 0.019 | 0.003 | 0.0013 | 0.058 | Bal. |
Fig. 1. Morphology characterization of inclusions in BASE steel. (a) Al2O3/MnS-type inclusion. (b) Al2O3-type inclusion. (c) MnS-type inclusion. (d) EDS results of the points from (a)-(c). (e) TEM image of an Al2O3/MnS inclusion in BASE steel. (f) Line-scan analysis of elements by EDS corresponding to (e).
Fig. 2. Morphology characterization of inclusions in REM steel. SEM images of (La, Ce, Cr, Fe)-O inclusions in (a) 21REM steel and (b) 58REM steel. SEM images of (La, Ce, Cr, Fe)-O-S inclusions in (c) 21REM steel and (d) 58REM steel. (e) EDS results of the points from (a)-(d). (f) TEM image of a (La, Ce, Cr, Fe)-O inclusion in 21REM steel. (g) line-scan analysis of elements by EDS corresponding to (f).
Fig. 3. Statistical diagram of inclusion properties: Effects of rare earth metals addition on the area, number and area distributions of inclusion per frame area of the experimental steels: (a) the total area and number of inclusions, (b) the area distribution of inclusions. Area distribution of different types of inclusions in experimental steels: (c) BASE steel, (d) 21REM steel, (e) 58REM steel.
| Substance | Free energy of formation (J/mol) |
|---|---|
| Ce2O3 | -1706.2 |
| La2O3 | -1705.8 |
| Al2O3 | -1582.3 |
| CeS | -451.5 |
| LaS | -451.5 |
| MnS | -218.4 |
Table 2. Standard free energy of formation of relevant oxides and sulphides at 298.15 K [34].
| Substance | Free energy of formation (J/mol) |
|---|---|
| Ce2O3 | -1706.2 |
| La2O3 | -1705.8 |
| Al2O3 | -1582.3 |
| CeS | -451.5 |
| LaS | -451.5 |
| MnS | -218.4 |
Fig. 4. Electrochemical characterization of pitting corrosion. (a) Potentiodynamic polarization tests of the experimental steels in 0.1 mol/L NaCl solution at 25 °C. (b) Cumulative probability results of pitting potential of the experimental steels obtained from 10 groups of potentiodynamic polarization tests. (c) Potentiostatic tests at an applied potential of -80 mV/SCE of the experimental alloys in 0.1 mol/L NaCl solution at 25 °C. (d) Amplification section of red box in Fig. 4(c). (e) Statistical distribution of current spike heights from Fig. 4(c). (f) Statistical distribution of transient lifetimes from Fig. 4(c).
| Alloy | BASE | 21REM | 58REM |
|---|---|---|---|
| Numbers of peak | 66 | 358 | 395 |
Table 3. Numbers of peak for experimental steels obtained from Fig. 9(a).
| Alloy | BASE | 21REM | 58REM |
|---|---|---|---|
| Numbers of peak | 66 | 358 | 395 |
Fig. 5. SEM image and SKPFM analysis of an Al2O3\MnS type inclusion in BASE steel: (a1) SEM image; (a2) topographical map; (a3) line-scan section analysis result obtained from the topographical map; (a4) volta potential map; (a5) line-scan section analysis result obtained from the volta potential map. SEM image and SKPFM analysis of a (La, Ce, Cr, Fe)-O type inclusion in 58REM steel: (b1) SEM image; (b2) topographical map; (b3) line-scan section analysis result obtained from the topographical map; (b4) volta potential map; (b5) line-scan section analysis result obtained from the volta potential map.
Fig. 6. SEM-EDS analysis of the corrosion morphology evolution of Al2O3/MnS inclusions in BASE, (a) the inclusion morphology before applying -80 mV/SCE for 10 min; (b) the inclusion morphology after applying -80 mV/SCE for 10 min; (c) EDS analysis results corresponding to (a) and (b); (d) the inclusion morphology before applying 0 mV/SCE for 10 min; (e) the inclusion morphology after applying 0 mV/SCE for 10 min; (f) EDS analysis results corresponding to (d) and (e); (g) The morphology of the maximum stable pitting pit on the electrode surface; (h) EDS analysis results corresponding to (g).
Fig. 8. SEM-EDS analysis of the corrosion morphology evolution of inclusions in 58REM steel, (a) the inclusion morphology before applying -80 mV/SCE for 10 min; (b) the inclusion morphology after applying -80 mV/SCE for 10 min; (c) EDS analysis results corresponding to (a) and (b); (d) the inclusion morphology before applying 120 mV/SCE for 10 min; (e) the inclusion morphology after applying 120 mV/SCE for 10 min; (f) EDS analysis results corresponding to (d) and (e); (g) The morphology of the maximum stable pitting pit on the electrode surface; (h) EDS analysis results corresponding to (g).
| [1] | P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, Y.Y. Li, Mater. Sci. Eng. A, 527(2010), pp. 3210-3216. |
| [2] | P.D. Bilmes, M. Solari, C.L. Llorente, Mater. Charact., 46(2001), pp. 285-296. |
| [3] | G.Y. Wei, S.Y. Lu, S.X. Li, K.F. Yao, H.W. Luan, X.F. Fang, Corros. Sci., 177(2020), Article 108951. |
| [4] | Y. Long, G. Wu, A.Q. Fu, J.F. Xie, M.F. Zhao, Z.Q. Bai, J.H. Luo, Y.R. Feng, Eng. Fail. Anal., 93(2018), pp. 330-339. |
| [5] | S. Marcelin, N. Pébère, S. Régnier, Electrochim. Acta, 87(2013), pp. 32-40. |
| [6] | H. Zhang, Y.L. Zhao, Z.D. Jiang, Mater. Lett., 59(2005), pp. 3370-3374. |
| [7] | C. Liu, R.I. Revilla, D. Zhang, Z. Liu, A. Lutz, F. Zhang, T. Zhao, H. Ma, X. Li, H. Terryn, Corros. Sci., 138(2018), pp. 96-104. |
| [8] | V. Vignal, H. Krawiec, O. Heintz, R. Oltra, Electrochim. Acta, 52(2007), pp. 4994-5001. |
| [9] | J. Torkkeli, T. Saukkonen, H. Hänninen, Corros. Sci., 96(2015), pp. 14-22. |
| [10] | T.V. Shibaeva, V.K. Laurinavichyute, G.A. Tsirlina, A.M. Arsenkin, K.V. Grigorovich, Corros. Sci., 80(2014), pp. 299-308. |
| [11] | C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn, Corros. Sci., 129(2017), pp. 82-90. |
| [12] | Z. Adabavazeh, W.S. Hwang, Y.H. Su, Sci. Rep., 7 (2017), p.46503. |
| [13] | H.Y. Ha, C.J. Park, H.S. Kwon, Corros. Sci., 49(2007), pp. 1266-1275. |
| [14] | G. Wranglen, Corros. Sci., 14(1974), pp. 331-349. |
| [15] | E.G. Webb, T. Suter, R.C. Alkire, J. Electrochem. Soc., 148 (2019), p.B186 |
| [16] | Q. Meng, G.S. Frankel, H.O. Colijn, S.H. Goss, Nature, 424(2003), pp. 389-390. |
| [17] | S.J. Zheng, Y.J. Wang, B. Zhang, Y.L. Zhu, C. Liu, P. Hu, X.L. Ma, Acta Mater., 58(2010), pp. 5070-5085. |
| [18] | R. Oltra, V. Vignal, Corros. Sci., 49(2007), pp. 158-165. |
| [19] | C. Aya, M. Izumi, S. Yu, H. Nobuyoshi, J. Electrochem. Soc., 159 (2012), p.C341. |
| [20] | C. Aya, M. Izumi, S. Yu, H. Nobuyoshi, J. Electrochem. Soc., 160 (2013), p.C511. |
| [21] | J. Wei, J.H. Dong, W. Ke, X.Y. He, Corrosion, 71(2015), pp. 1467-1480. |
| [22] | D.E. Williams, T.F. Mohiuddin, Y.Y. Zhu, J. Electrochem. Soc., 145(2019), pp. 2664-2672. |
| [23] | D.Z. Li, X.Q. Chen, P.X. Fu, X.P. Ma, H.W. Liu, Y. Chen, Y.F. Cao, Y.K. Luan, Nat. Commun., 5 (2014), p.5572. |
| [24] | J.E. Castle, R. Ke, Corros. Sci., 30(1990), pp. 409-428. |
| [25] | M.A. Baker, J.E. Castle, Corros. Sci., 33(1992), pp. 1295-1312. |
| [26] | S. Zheng, C. Li, Y. Qi, L. Chen, C. Chen, Corros. Sci., 67(2013), pp. 20-31. |
| [27] | M. Bethencourt, F.J. Botana, J.J. Calvino, M. Marcos, M.A. Rodríguez-Chacón, Corros. Sci., 40(1998), pp. 1803-1819. |
| [28] | S.H. Jeon, S.T. Kim, M.S. Choi, J.S. Kim, K.T. Kim, Y.S. Park, Corros. Sci., 75(2013), pp. 367-375. |
| [29] | H. Yang, K. Yang, B. Zhang, Mater. Lett., 61(2007), pp. 1154-1157. |
| [30] | H. Ha, C. Park, H. Kwon, Sci. Mater., 55(2006), pp. 991-994. |
| [31] | S.T. Kim, S.H. Jeon, I.S. Lee, Y.S. Park, Corros. Sci., 52(2010), pp. 1897-1904. |
| [32] | L. Yue, L. Wang, J. Han, J. Rare Earths, 28(2010), pp. 952-956. |
| [33] | Y.C. Lu, M.B. Ives, Corros. Sci., 37(1995), pp. 145-155. |
| [34] | D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, R.L. Nuttall, J. Phys. Chem. Ref. Data(1982), American Chemical Society and the American Institute of Physics |
| [35] | J. Stewart, D.E. Williams, Corros. Sci., 33(1992), pp. 457-474. |
| [36] | T. Suter, H. Böhni, Electrochim. Acta, 42(1997), pp. 3275-3280. |
| [37] | K. Osozawa, N. Okato, Y.M. Kolotyrkin ( Ed.),Proceedings of the 1st soviet-Japanese Seminar on Corrosion and Protection of Metals, Nauka, Moskow (1979), p. 229. |
| [38] | S. Szklarska-Smialowska, Pitting Corrosion of Metals, NACE, Houston, TX(1986)1986. |
| [39] | A. Szummer, M. Janik-Czachor, S. Hofmann, Mater. Chem. Phys., 34(1993), pp. 181-183. |
| [40] | S.E. Lott, R.C. Alkire, J. Electrochem. Soc., 136(2019), pp. 973-979. |
| [41] | G.S. Eklund, J. Electrochem. Soc., 121 (2019), p.467. |
| [42] | R.C. Newman, Nature, 415(2002), pp. 743-744. |
| [43] | G. Sander, V. Cruzab, N. Bhatcd, N. Birbilisd, Corros. Sci., 177(2020), Article 109004. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
