J. Mater. Sci. Technol. ›› 2021, Vol. 93: 205-220.DOI: 10.1016/j.jmst.2021.03.053
• Original article • Previous Articles Next Articles
Xiaoqi Yuea,b, Lei Zhanga,*(), Xiaoyan Hec,d, Decheng Konga, Yong Huad,*(
)
Accepted:
2021-02-17
Published:
2021-12-10
Online:
2021-12-10
Contact:
Lei Zhang,Yong Hua
About author:
y.hua@leeds.ac.uk (Y. Hua).Xiaoqi Yue, Lei Zhang, Xiaoyan He, Decheng Kong, Yong Hua. Research Article Hypo-toxicity and prominent passivation characteristics of 316 L stainless steel fabricated by direct metal laser sintering in a simulated inflammation environment[J]. J. Mater. Sci. Technol., 2021, 93: 205-220.
Elements (wt%) | C | Cr | Mn | Si | P | S | Mo | Ni | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Wrought 316L | 0.03 | 17.5 | 2 | 1 | 0.045 | 0.03 | 2.5 | 13 | 0.11 | Bal. |
Powder 316L | 0.02 | 16.8 | 1.9 | 0.1 | 0.032 | 0.02 | 2.25 | 12.1 | 0.15 | Bal. |
Table 1. Chemical composition of wrought and powder 316 L SS.
Elements (wt%) | C | Cr | Mn | Si | P | S | Mo | Ni | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Wrought 316L | 0.03 | 17.5 | 2 | 1 | 0.045 | 0.03 | 2.5 | 13 | 0.11 | Bal. |
Powder 316L | 0.02 | 16.8 | 1.9 | 0.1 | 0.032 | 0.02 | 2.25 | 12.1 | 0.15 | Bal. |
Baseplate temperature/ °C | Laser power/W | Scanning rate/mm·s - 1 | Hatch distance/ μm | Powder thickness/μm |
---|---|---|---|---|
80 | 80/200 | 1083 | 90 | 25 |
Table 2. Detailed printing parameters used in this work.
Baseplate temperature/ °C | Laser power/W | Scanning rate/mm·s - 1 | Hatch distance/ μm | Powder thickness/μm |
---|---|---|---|---|
80 | 80/200 | 1083 | 90 | 25 |
Concentration (mmol/L) | NaCl | KCl | Na2HPO4 | KH2PO4 | 30%H2O2 | pH |
---|---|---|---|---|---|---|
Stage 1 | 137 | 2.7 | 10 | 1.8 | 150 | 7.4 |
Stage 2 | 137 | 2.7 | 10 | 1.8 | 150 | 5.2 |
Stage 3 | 137 | 2.7 | 10 | 1.8 | 0 | 7.4 |
Table 3. Chemical composition of PBS solution.
Concentration (mmol/L) | NaCl | KCl | Na2HPO4 | KH2PO4 | 30%H2O2 | pH |
---|---|---|---|---|---|---|
Stage 1 | 137 | 2.7 | 10 | 1.8 | 150 | 7.4 |
Stage 2 | 137 | 2.7 | 10 | 1.8 | 150 | 5.2 |
Stage 3 | 137 | 2.7 | 10 | 1.8 | 0 | 7.4 |
Fig. 3. The fluctuation of corrosion potential for wrought, DMLS 80 W, and DMLS 200 W 316 L SS in different stages of simulated inflammation environments.
Fig. 4. Plots of potential dynamic curves for wrought and DMLS 316 L SS in (a) PBS with H2O2 at pH 7.4, (b) PBS with H2O2 at pH 5.2, (c) PBS without H2O2 at pH 7.4 [36], and (d) the comparison of pitting potentials for three types of 316 L SS in three typical conditions.
Fig. 5. Nyquist plots for wrought 316 L SS, DMLS 80 W 316 L SS, and DMLS 200 W 316 L SS in simulated inflammation Stage 1 for (a)1 hour and (b) 168 h, Stage 2 for (c) 1 h and (d) 168 h, Stage 3 for (e) 1 h and (f) 168 h.
Fig. 8. The components of the passive film formed on (a)-(c) wrought 316 L, (d)-(f) DMLS 80 W 316 L, and (g)-(i) DMLS 200 W 316 L in different stages of simulated inflammation environments.
Fig. 9. The release of Cr, Fe, Mo, and Ni from wrought and DMLS 80/200 W 316 L SS in (a) Stage 1, (b) Stage 2, and (c) Stage 3 of inflammation, and (d) the comparison of total ions release between wrought 316 L and DMLS 316 L.
Fig. 12. Morphology on the surface of DMLS 80 W 316 L SS at the static polarisation of 600 mV vs. Ag/AgCl for (a) 0 s and (b) 4000 s; and the (c) average depth and (d) profilometry of the prores and pits in the period of Stage 1.
Fig. 13. Morphology on the surface of DMLS 80 W 316 L SS at the static polarisation of 600 mV vs. Ag/AgCl for (a) 0 s and (b) 4000 s; and the (c) average depth and (d) 3D profilometry of the prores and pits in the period of Stage 2.
[1] | X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Biomaterials, 83(2016), pp. 127-141. |
[2] | D. Kong, C. Dong, X. Ni, X. Li,Npj Mater. Degrad., 3 (2019), p.24. |
[3] | G. Sander, J. Tan, P. Balan, O. Gharbi, D. Feenstra, L. Singer, S. Thomas, R. Kelly, J. Scully, N. Birbilis, Corrosion, 74(2018), pp. 1318-1350. |
[4] | T. Hoar, Corros. Sci., 7(1967), pp. 341-355. |
[5] | N. Sato, Electrochim. Acta, 16(1971), pp. 1683-1692. |
[6] | E. Sikora, D.D. Macdonald, Solid State Ion, 94(1997), pp. 141-150. |
[7] | H. Luo, C. Dong, K. Xiao, X. Li, RSC Adv., 6(2016), pp. 9940-9949. |
[8] | C. Fonseca, M. Barbosa, Corros. Sci., 43(2001), pp. 547-559. |
[9] | E.K. Brooks, R.P. Brooks, M.T. Ehrensberger, Mater. Sci. Eng. C, 71(2017), pp. 200-205. |
[10] | W. Xu, F. Yu, L. Yang, B. Zhang, B. Hou, Y. Li, Mater. Sci. Eng. C, 92(2018), pp. 11-19. |
[11] | S.T. Test, S. Weiss, J. Biol. Chem., 259(1984), pp. 399-405. |
[12] | M. Atapour, X. Wang, K. Färnlund, I. Odnevall Wallinder, Y. Hedberg, Electrochim. Acta, 354(2020), Article 136748. |
[13] | M. Cieślik, W. Reczyński, A.M. Janus, K. Engvall, R.P. Socha, A. Kotarba, Corros. Sci., 51(2009), pp. 1157-1162. |
[14] | R. Köster, D. Vieluf, M. Kiehn, M. Sommerauer, J. Kähler, S. Baldus, T. Meinertz, C.W. Hamm, The Lancet, 356(2000), pp. 1895-1897. |
[15] | Z.-.H. Zhao, Y. Sakagami, T. Osaka, Can. J. Microbiol., 44(1998), pp. 441-447. |
[16] | X. Zhang, W. Xu, D. Shoesmith, J. Wren, Corros. Sci., 49(2007), pp. 4553-4567. |
[17] | W. Xu, F. Yu, L. Yang, B. Zhang, B. Hou, Y. Li, Mater. Sci. Eng. C, 92(2018), pp. 11-19. |
[18] | C. Fonseca, M. Barbosa, Corros. Sci., 43(2001), pp. 547-559. |
[19] | C.N. Kraft, B. Burian, L. Perlick, M.A. Wimmer, T. Wallny, O. Schmitt, O. Diedrich, J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 57(2001), pp. 404-412. |
[20] | C.-.C. Shih, C.-.M. Shih, Y.-.Y. Su, L.H.J. Su, M.-.S. Chang, S.-.J. Lin, Corros. Sci., 46(2004), pp. 427-441. |
[21] | M. Metikoš-Huković, Z. Pilić, R. Babić, D. Omanović, Acta Biomater, 2(2006), pp. 693-700. |
[22] | K. Asami, K. Hashimoto, S. Shimodaira, Corros. Sci., 18(1978), pp. 151-160. |
[23] | T. Zhang, X. Jiang, X. Lu, S. Li, C. Shi, Corrosion, 50(1994), pp. 339-344. |
[24] | R. Moreira, C. Franco, C. Joia, S. Giordana, O. Mattos, Corros. Sci., 46(2004), pp. 2987-3003. |
[25] | J.-.B. Lee, S.-.W. Kim,Mater. Chem. Phys., 104(2007), pp. 98-104. |
[26] | H. Li, C. Yang, E. Zhou, C. Yang, H. Feng, Z. Jiang, D. Xu, T. Gu, K. Yang, J. Mater. Sci. Technol., 33(2017), pp. 1596-1603. |
[27] | Y. Hua, S. Mohammed, R. Barker, A. Neville, J. Mater. Sci. Technol., 41(2020), pp. 21-32. |
[28] | E.J. Martin, R. Pourzal, M.T. Mathew, K.R. Shull, Langmuir, 29(2013), pp. 4813-4822. |
[29] | X. Li, Y. Zhao, W. Qi, J. Xie, J. Wang, B. Liu, G. Zeng, T. Zhang, F. Wang, Appl. Surf. Sci., 469(2019), pp. 146-161. |
[30] | W.M. Elshahawy, I. Watanabe, P. Kramer, Dent. Mater., 25(2009), pp. 1551-1555. |
[31] | R. Lappalainen, A. Yli-Urpo, Eur. J. Oral Sci., 95(1987), pp. 364-368. |
[32] | L. Navarro, J. Luna, I. Rintoul Surf. Rev. Lett., 24(2017), Article 1730002. |
[33] | F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F. Silva, G. Miranda, Addit. Manuf., 16(2017), pp. 81-89. |
[34] | C. Man, C. Dong, T. Liu, D. Kong, D. Wang, X. Li, Appl. Surf. Sci., 467(2019), pp. 193-205. |
[35] | D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, X. Li, Mater. Des., 152(2018), pp. 88-101. |
[36] | X. Yue, L. Zhang, Y. Hua, J. Wang, N. Dong, X. Li, S. Xu, A. Neville, Appl. Surf. Sci., 529(2020), Article 147170. |
[37] | N.S. Al-Mamun, K. Mairaj Deen, W. Haider, E. Asselin, I. Shabib, Addit. Manuf., 34(2020), Article 101237. |
[38] | C. Man, C. Dong, T. Liu, D. Kong, D. Wang, X. Li, Appl. Surf. Sci., 467(2019), pp. 193-205. |
[39] | E.K. Brooks, R.P. Brooks, M.T. Ehrensberger, Mater. Sci. Eng. C, 71(2017), pp. 200-205. |
[40] | S.T. Test, S. Weiss, J. Biol. Chem., 259(1984), pp. 399-405. |
[41] | A.S.T.M. G61, Cyclic Potentiodynamic Polarization Testing, ASTM international(1999). |
[42] | C. Boissy, C. Alemany-Dumont, B. Normand, Electrochem. Commun., 26(2013), pp. 10-12. |
[43] | J.O. Bockris, D. Drazic, Electrochim. Acta, 7(1962), pp. 293-313. |
[44] | C.-.O. Olsson, D. Landolt, Electrochim. Acta, 48(2003), pp. 1093-1104. |
[45] | X. Zhang, W. Xu, D. Shoesmith, J. Wren, Corros. Sci., 49(2007), pp. 4553-4567. |
[46] | Y. Wang, X. Cheng, X. Li, Electrochem. Commun., 57(2015), pp. 56-60. |
[47] | V. Maurice, W. Yang, P. Marcus, J. Electrochem. Soc., 145(1998), pp. 909-920. |
[48] | B. Zhang, J. Wang, B. Wu, X. Guo, Y. Wang, D. Chen, Y. Zhang, K. Du, E. Oguzie, X. Ma, Nat. Commun., 9 (2018), p.2559. |
[49] | S.G. Steinemann, Implants Infect. Fract. Fixat., 27(1996)S/C16-S/C22 |
[50] | A. Yamamoto, R. Honma, M. Sumita, J. Biomed. Mater. Res., 39(1998), pp. 331-340. |
[51] | D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man, X. Li, Appl. Surf. Sci., 504(2020), Article 144495. |
[52] | C. Man, Z. Duan, Z. Cui, C. Dong, D. Kong, T. Liu, S. Chen, X. Wang, Mater. Lett., 243(2019), pp. 157-160. |
[53] | D. Kong, C. Dong, S. Wei, X. Ni, L. Zhang, R. Li, L. Wang, C. Man, X. Li, Addit. Manuf., 38(2021), Article 101804. |
[54] | X. Yue, M. Zhao, L. Zhang, H. Zhang, D. Li, M. Lu, RSC Adv., 8(2018), pp. 24679-24689. |
[55] | G.S. Frankel, T. Li, J.R. Scully, J. Electrochem. Soc., 164(2017), pp. C180-C181. |
[56] | T. Li, J.R. Scully, G.S. Frankel, J. Electrochem. Soc., 165(2018), pp. C762-C770. |
[57] | Z. Duan, C. Man, C. Dong, Z. Cui, D. Kong, L. wang, X. Wang, Corros. Sci., 167(2020), Article 108520 |
[1] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
[2] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[3] | Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 217-233. |
[4] | Yumeng Ni, Fan Zhang, Demian I. Njoku, Yingjie Yu, Jinshan Pan, Meijiang Meng, Ying Li. Corrosion mechanism of CuAl-NiC abradable seal coating system—The influence of porosity, multiphase, and multilayer structure on the corrosion failure [J]. J. Mater. Sci. Technol., 2021, 88(0): 258-269. |
[5] | L.L. Li, Z.B. Wang, S.Y. He, Y.G. Zheng. Correlation between depassivation and repassivation processes determined by single particle impingement: Its crucial role in the phenomenon of critical flow velocity for erosion-corrosion [J]. J. Mater. Sci. Technol., 2021, 89(0): 158-166. |
[6] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
[7] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[8] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[9] | Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength [J]. J. Mater. Sci. Technol., 2021, 69(0): 129-137. |
[10] | Xinhua Wang, Lin Fan, Kangkang Ding, Likun Xu, Weimin Guo, Jian Hou, Tigang Duan. Pitting corrosion of 2Cr13 stainless steel in deep-sea environment [J]. J. Mater. Sci. Technol., 2021, 64(0): 187-194. |
[11] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 79(0): 1-14. |
[12] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[13] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[14] | D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Yu. Ustinov, V.Yu. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov. Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and sodium batteries [J]. J. Mater. Sci. Technol., 2020, 54(0): 181-189. |
[15] | Paulina Kazimierczak, Aleksandra Benko, Krzysztof Palka, Cristina Canal, Dorota Kolodynska, Agata Przekora. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds [J]. J. Mater. Sci. Technol., 2020, 43(0): 52-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||