J. Mater. Sci. Technol. ›› 2021, Vol. 90: 9-19.DOI: 10.1016/j.jmst.2021.02.021
• Research Article • Previous Articles Next Articles
Lei Hea, ZhiLei Wanga, Hiroyuki Akebonob,*(), Atsushi Sugetab
Received:
2020-09-21
Accepted:
2021-02-13
Published:
2021-11-05
Online:
2021-11-05
Contact:
Hiroyuki Akebono
About author:
* E-mail address: akebono@hiroshima-u.ac.jp (H. Akebono).Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels[J]. J. Mater. Sci. Technol., 2021, 90: 9-19.
Tensile stress σTS (MPa) | Yield stress σYS (MPa) | Hardness Hv | Number of data | ||
---|---|---|---|---|---|
AISI 316 | 592 | 264 | 176 | 8 | Present work |
570 | 263 | 162 | 6 | Previous work [ | |
587.5 | 259.1 | 203.5 | 10 | Literature [ | |
2RM2 | 968 | 928 | 327 | 8 | Previous work [ |
CA6NM | 830* | 600* | 280* | 10* | Previous work [ |
830 | 600 | 280 | 11 | Previous work [ | |
918 | 575 | 277 | 53 | Literature [ | |
CA15 | 630* | 420* | 186.7* | 7* | Previous work [ |
AISI 4140 | 950 | 800 | 314 | 13 | Present work |
1019 | 976 | 348 | 12 | Literature [ | |
1030 | 949 | 337 | 10 | ||
1062 | 975 | 339 | 12 | ||
1027 | 942 | 336 | 11 |
Table 1 Mechanical properties of the utilized materials.
Tensile stress σTS (MPa) | Yield stress σYS (MPa) | Hardness Hv | Number of data | ||
---|---|---|---|---|---|
AISI 316 | 592 | 264 | 176 | 8 | Present work |
570 | 263 | 162 | 6 | Previous work [ | |
587.5 | 259.1 | 203.5 | 10 | Literature [ | |
2RM2 | 968 | 928 | 327 | 8 | Previous work [ |
CA6NM | 830* | 600* | 280* | 10* | Previous work [ |
830 | 600 | 280 | 11 | Previous work [ | |
918 | 575 | 277 | 53 | Literature [ | |
CA15 | 630* | 420* | 186.7* | 7* | Previous work [ |
AISI 4140 | 950 | 800 | 314 | 13 | Present work |
1019 | 976 | 348 | 12 | Literature [ | |
1030 | 949 | 337 | 10 | ||
1062 | 975 | 339 | 12 | ||
1027 | 942 | 336 | 11 |
C | Si | Mn | P | S | Ni | Cr | Mo | Co | Cu | N | Fe | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AISI 316 | 0.04 | 0.25 | 1.32 | 0.037 | 0.03 | 10.04 | 16.91 | 2.02 | 0.30 | 0 | 0 | 69.053 | Present work |
0.04 | 0.30 | 1.25 | 0.038 | 0.025 | 10.13 | 16.01 | 2.00 | 0 | 0 | 0 | 70.207 | [ | |
0.009 | 0.39 | 1.75 | 0.029 | 0.002 | 10.20 | 16.31 | 2.07 | 0.16 | 0.23 | 0.11 | 68.740 | [ |
Table 2a Chemical composition of AISI 316 (mass%).
C | Si | Mn | P | S | Ni | Cr | Mo | Co | Cu | N | Fe | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AISI 316 | 0.04 | 0.25 | 1.32 | 0.037 | 0.03 | 10.04 | 16.91 | 2.02 | 0.30 | 0 | 0 | 69.053 | Present work |
0.04 | 0.30 | 1.25 | 0.038 | 0.025 | 10.13 | 16.01 | 2.00 | 0 | 0 | 0 | 70.207 | [ | |
0.009 | 0.39 | 1.75 | 0.029 | 0.002 | 10.20 | 16.31 | 2.07 | 0.16 | 0.23 | 0.11 | 68.740 | [ |
C | Si | Mn | P | S | Ni | Cr | Mo | N | Al | Fe | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2RM2 | 0.023 | 0.40 | 0.56 | 0.006 | 0.003 | 5.14 | 12.63 | 0.31 | 0 | 0 | 80.928 | [ |
CA6NM | 0.049 | 0.50 | 0.83 | 0.04 | 0.004 | 3.62 | 12.82 | 0 | 0.027 | 0.01 | 82.100 | [ |
0.06 | 1.00 | 1.00 | 0.04 | 0.03 | 4.00 | 12.75 | 0.52 | 0 | 0 | 80.600 | [ | |
CA15 | 0.11 | 0.40 | 0.67 | 0.021 | 0.009 | 0.08 | 12.68 | 0 | 0.017 | 0.004 | 86.009 | [ |
Table 2b Chemical composition of CA6NM series (mass%).
C | Si | Mn | P | S | Ni | Cr | Mo | N | Al | Fe | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2RM2 | 0.023 | 0.40 | 0.56 | 0.006 | 0.003 | 5.14 | 12.63 | 0.31 | 0 | 0 | 80.928 | [ |
CA6NM | 0.049 | 0.50 | 0.83 | 0.04 | 0.004 | 3.62 | 12.82 | 0 | 0.027 | 0.01 | 82.100 | [ |
0.06 | 1.00 | 1.00 | 0.04 | 0.03 | 4.00 | 12.75 | 0.52 | 0 | 0 | 80.600 | [ | |
CA15 | 0.11 | 0.40 | 0.67 | 0.021 | 0.009 | 0.08 | 12.68 | 0 | 0.017 | 0.004 | 86.009 | [ |
C | Si | Mn | P | S | Cu | Ni | Cr | Mo | Fe | ||
---|---|---|---|---|---|---|---|---|---|---|---|
AISI 4140 | 0.42 | 0.22 | 0.80 | 0.008 | 0.006 | 0.01 | 0.02 | 1.06 | 0.16 | 97.296 | Present work |
Max:0.43 Min:0.38 | Max: 0.35 Min: 0.15 | Max:0.85 Min:0.60 | 0.03 | 0.03 | 0.30 | 0.25 | Max: 1.2 Min: 0.9 | Max: 0.30 Min: 0.15 | -- | [ |
Table 2c Chemical composition of AISI 4140 (mass%).
C | Si | Mn | P | S | Cu | Ni | Cr | Mo | Fe | ||
---|---|---|---|---|---|---|---|---|---|---|---|
AISI 4140 | 0.42 | 0.22 | 0.80 | 0.008 | 0.006 | 0.01 | 0.02 | 1.06 | 0.16 | 97.296 | Present work |
Max:0.43 Min:0.38 | Max: 0.35 Min: 0.15 | Max:0.85 Min:0.60 | 0.03 | 0.03 | 0.30 | 0.25 | Max: 1.2 Min: 0.9 | Max: 0.30 Min: 0.15 | -- | [ |
Fig. 3. Machine learning results of AISI 316 with dataset ratio: (a) ANN (train/test) 9:1 (b) SVR 9:1(c) RF 9:1 (d) ANN 8:2 (e) SVR 8:2 (f) RF 8:2 (g) ANN 7:3 (h) SVR 7:3 (i) RF 7:3. Shaded area: dataset without variables selected.
Fig. 4. Machine learning results of AISI 4140 with dataset ratio: (a) ANN (train/test) 9:1 (b) SVR 9:1(c) RF 9:1 (d) ANN 8:2 (e) SVR 8:2 (f) RF 8:2 (g) ANN 7:3 (h) SVR 7:3 (i) RF 7:3. Shaded area: dataset without variables selected.
Fig. 5. Machine learning results of CA6NM series with dataset ratio: (a) ANN (train/test) 9:1 (b) SVR 9:1(c) RF 9:1 (d) ANN 8:2 (e) SVR 8:2 (f) RF 8:2 (g) ANN 7:3 (h) SVR 7:3 (i) RF 7:3. Shaded area: dataset without variables selected.
[1] |
S.S. Tschegg, Int. J. Fatigue 60 (2014) 2-17.
DOI URL |
[2] |
Z.Y. Huang, D. Wagner, C. Bathias, J.L. Chaboche, Int. J. Fatigue 33 (2011) 115-121.
DOI URL |
[3] |
K. Shibanuma, K. Ueda, H. Ito, Y. Nemoto, M. Kinefuchi, K. Suzuki, M. Enoki, Mater. Des. 139 (2018) 269-282.
DOI URL |
[4] | NIMS Fatigue Data Sheet 95, National Institute of Materials Science, Japan, 2004. |
[5] | K. Worden, G. Manson, Philos. Trans. Math. Phys. Eng. Sci. 365 (2007) 515-537. |
[6] | A. Shoeb, J. Guttag, Application of Machine Learning to Epileptic Seizure Detection, in: Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010. |
[7] |
H. Bhaskar, D.C. Hoyle, S. Singh, Comput. Biol. Med. 36 (2006) 1104-1125.
PMID |
[8] |
P.J. García Nieto, E. García-Gonzalo, J.C. Álvarez Antón, V.M.González Suárezb R. Mayo Bayón, F. Mateos Martín, J. Comput. Appl. Math. 330 (2018) 877-895.
DOI URL |
[9] |
P. Aminian, H. Niroomand, A.H. Gandomi, A.H. Alavi, M.A. Esmaeili, Neural Comput. Appl. 23 (2013) 119-131.
DOI URL |
[10] |
X.Y. Li, C.C. Roth, D. Mohr, Int. J. Plast. 118 (2019) 320-344.
DOI URL |
[11] |
A. Agrawal, P.D. Deshpande, A. Cecen, G.P. Basavarsu, A.N. Choudhary, S.R. Kalidindi, Integr. Mater. Manuf. Innov. 3 (2014) 90-108.
DOI URL |
[12] |
H.Y. Wan, G.F. Chen, C.P. Li, X.B. Qi, G.P. Zhang, J. Mater. Sci. Technol. 35 (2019) 1137-1146.
DOI |
[13] | A. Agrawal, A. Choudhary, APL Mater. 4 (2016) 1-10, 053208. |
[14] | A. Rovinelli, M.D. Sangid, H. Proudhon, W. Ludwig, Npj Comput. Mater. 35 (2018) 1-10. |
[15] |
M. Zhang, C.-N. Sun, X. Zhang, P.C. Goh, J. Wei, D. Hardacre, H. Li, Int. J. Fatigue 128 (2019), 105194.
DOI URL |
[16] |
L. He, H. Akebono, M. Kato, A. Sugeta, Int. J. Fatigue 101 (2017) 18-26.
DOI URL |
[17] |
M. Natsume, Y. Hayashi, H. Akebono, M. Kato, A. Sugeta, Procedia Eng. 2 (2009) 1273-1281.
DOI URL |
[18] |
L. He, H. Akebono, A. Sugeta, Y. Hayashi, Fatigue Fract. Eng. Mater. Struct. 43 (2020) 1419-1432.
DOI URL |
[19] |
J. Arakawa, M. Kakuta, Y. Hayashi, R. Tanegashima, H. Akebono, M. Kato, A. Sugeta, Surf. Eng. 30 (2014) 662-669.
DOI URL |
[20] | H. Akebono, S. Matsuzaki, M. Sofian, Y. Hayashi, M. Kato, A. Sugeta, Japan Soc. Mech. Eng. 75-759 (2009) 1585-1590, in Japanese. |
[21] |
J.P. Strizak, H. Tian, P.K. Liaw, L.K. Mansur, J. Nucl. Mater. 343 (2005) 134-144.
DOI URL |
[22] |
L.B. Winck, J.L.A. Ferreira, J.A. Araujo, M.D. Manfrinato, C.R.M. da Silva, Surf. Coat. Technol. 232 (2013) 844-850.
DOI URL |
[23] |
K. Tanaka, S. Nishijima, S. Matsuoka, T. Abe, F. Kouzu, Fatigue Fract. Eng. Mater. Struct. 4 (1981) 97-108.
DOI URL |
[24] | P.P. Milella, Springer press, 2013, pp. 150-155. |
[25] | R.J. Schalkoff, New York, 1997. |
[26] | M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, B. Scholkopf, IEEE Intell. Syst. Appl. 13 (1998) 18-28. |
[27] | A. Liaw, W. Matthew, R News 2 (2002) 18-22. |
[28] | M. Pelikan, D.E. Goldberg, E. Cant ´u-Paz, in: W. Banzhaf, J.M. Daida, A.E. Eiben, M. H. Garzon, V. Honavar (Eds.), Proc. of the 1st Annual Conf. on Genetic and Evolutionary Computation, Vol. 1, Morgan Kaufmann Publishers, Orlando, FL, 1999, p. 525. |
[29] |
Z.L. Wang, T. Ogawa, Y. Adachi, Adv. Theory Simul. 2 (2019), 1900110.
DOI URL |
[30] |
Z.L. Wang, T. Ogawa, Y. Adachi, Adv. Theory Simul. 3 (2020), 1900177.
DOI URL |
[31] |
L. He, H. Akebono, A. Sugeta, Int. J. Fatigue 116 (2018) 388-395.
DOI URL |
[32] | T. Sakai, A. Sugeta, JSMS, 2007. |
[33] |
M. Rahaman, W.Z. Mu, J. Odqvist, P. Hedstrom, Metall. Mater. Trans. A 50 A (2019) 2081-2091.
DOI URL |
[34] | R. Tibshirani, J. R. Stat. Soc. Ser. B 58 (1996) 267-288. |
[35] | H. Akaike, Automat. Control 19 (1974) 716-723. |
[36] | H.S. Bhat, N. Kumar, On the Derivation of the Bayesian information criterion, in: School of Natural Sciences, University of California, 2010. |
[37] |
M.M. Jin, P.H. Cao, M.P. Short, J. Nucl. Mater. 523 (2019) 189-197.
DOI URL |
[38] |
Z.L. Wang, Y. Adachi, Mater. Sci. Eng. A 744 (2019) 661-670.
DOI URL |
[39] | Y. Hozo, H. Akebono, M. Kato, A. Sugeta, Japan Soc. Mech. Eng. (2012), 12-5 (M&M2012 conference) (in Japanese). |
[1] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[2] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[3] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[4] | X.C. Li, J.X. Zhao, J.H. Cong, R.D.K. Misra, X.M. Wang, X.L Wang, C.J. Shang. Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior [J]. J. Mater. Sci. Technol., 2021, 84(0): 49-58. |
[5] | Yongfei Juan, Yongbing Dai, Yang Yang, Jiao Zhang. Accelerating materials discovery using machine learning [J]. J. Mater. Sci. Technol., 2021, 79(0): 178-190. |
[6] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
[7] | Chunguang Shen, Chenchong Wang, Pedro E.J.Rivera-Díaz-del-Castillo, Dake Xu, Qian Zhang, Chi Zhang, Wei Xu. Discovery of marageing steels: machine learning vs. physical metallurgical modelling [J]. J. Mater. Sci. Technol., 2021, 87(0): 258-268. |
[8] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[9] | Jia Li, Baobin Xie, Qihong Fang, Bin Liu, Yong Liu, Peter K. Liaw. High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 70-75. |
[10] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43(0): 168-174. |
[11] | Yong Hua, Sikiru Mohammed, Richard Barker, Anne Neville. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO2-saturated brine [J]. J. Mater. Sci. Technol., 2020, 41(0): 21-32. |
[12] | Yuanjie Zhi, Tao Yang, Dongmei Fu. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 202-210. |
[13] | Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 140-147. |
[14] | Yingli Liu, Chen Niu, Zhuo Wang, Yong Gan, Yan Zhu, Shuhong Sun, Tao Shen. Machine learning in materials genome initiative: A review [J]. J. Mater. Sci. Technol., 2020, 57(0): 113-122. |
[15] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||