J. Mater. Sci. Technol. ›› 2021, Vol. 90: 1-8.DOI: 10.1016/j.jmst.2020.12.083
• Research Article • Next Articles
Huipeng Lv, Chen Wu*(), Faxiang Qin, Huaxin Peng, Mi Yan*(
)
Received:
2020-11-19
Accepted:
2020-12-22
Published:
2021-11-05
Online:
2021-11-05
Contact:
Chen Wu,Mi Yan
About author:
mse_yanmi@zju.edu.cn (M. Yan).Huipeng Lv, Chen Wu, Faxiang Qin, Huaxin Peng, Mi Yan. Extra-wide bandwidth via complementary exchange resonance and dielectric polarization of sandwiched FeNi@SnO2 nanosheets for electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2021, 90: 1-8.
Fig. 1. (a) Schematic illustration to show the synthesis of sandwiched FeNi@SnO2 nanosheets. (b) XRD results taken from the S1-S6 and SEM images of the (c) S1, (d) S2, (e) S3, (f) S4, (g) S5 and (h) S6. (i) TEM image and SAED pattern as the insert taken from the S3. (j) High-resolution TEM images taken from the interface between the FeNi nanoparticle and SnO2 nanosheet indicated by red rectangle in (i). (k) & (m) Lattice spacings and (l) & (n) the corrsponding FFT diffraction patterns taken from Region 1 and 2 in.(j).
Fig. 2. (a) Real part (ε′), (b) imaginary part (ε″) of the permittivity and (c) the dielectric loss tangent (tan δe = ε″/ε′) for different samples. (d) Real part (μ′), (e) imaginary part (μ″) of the permittivity and (f) the magnetic loss tangent (tan δm = μ″/μ′) for the S1-S6.
Fig. 4. (a) Complex permittivity and (b) complex permeability between 18.00 and 26.50 GHz for the S3 with the dielectric and magnetic loss tangent as insert. (c) RL curves in the extended range of 2.00-26.50 GHz for the S3. (d) Comparisons between the EM wave absorption of the sandwiched FeNi@SnO2 nanosheets with other related material systems [17], [20], [22], [37], [43], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62].
Fig. 5. Cole-Cole curves for the (a) S1, (b) S2, (c) S3, (d) S4, (e) S5 and (f) S6 in the frequency range of 2.00-18.00 GHz. The insert of (c) corresponds to the Cole-Cole curve for the S3 in the frequency range of 18.00-26.50 GHz.
Fig. 6. (a) Plot of the μ″(μ′)-2f-1 (C0) as a function of frequency for the S2, S3, S4, S5 and S6. (b) Hysteresis loops of the S2, S3, S4, S5 and S6 with detailed saturation magnetization (MS) and coercivity (HC) as the insert.
Fig. 7. (a) RL (b) attenuation constant (α), (c) real part (Z′) and (d) imaginary part (Z″) of the normalized input impedance as a function of frequency with the same thickness of 1.75 mm for all the samples in the frequency range of 2.00-18.00 GHz. (e)-(h) Corresponding results for the S3 in the frequency range of 18.00-26.50 GHz.
[1] |
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, Adv. Mater. 30 (2018), 1706343.
DOI URL |
[2] |
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, L. Zhang, H. Li, Adv. Funct. Mater. 28 (2018), 1707205.
DOI URL |
[3] |
Y. Li, X. Liu, R. Liu, X. Pang, Y. Zhang, G. Qin, X. Zhang, Carbon 139 (2018) 181-188.
DOI URL |
[4] |
G. Wang, S.J.H. Ong, Y. Zhao, Z.J. Xu, G. Ji, J. Mater. Chem. A 8 (2020) 24368-24387.
DOI URL |
[5] | B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, X. Huang, Z. Tian, G. Ji, Nano Res. (2020), . |
[6] |
Y. Huang, Q. Fan, J. Chen, L. Li, M. Chen, L. Tang, D. Fang, Compos. Sci. Technol. 191 (2020), 108066.
DOI URL |
[7] |
M. Zhou, W. Gu, G. Wang, J. Zheng, C. Pei, F. Fan, G. Ji, J. Mater. Chem. A 8 (2020) 24267-24283.
DOI URL |
[8] |
Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi, G. Wu, Chem. Eng. J. 402 (2020), 125951.
DOI URL |
[9] |
F. Zhang, W. Cui, B. Wang, B. Xu, X. Liu, X. Liu, Z. Jia, G. Wu, Compos, Pt. B-Eng. 204 (2021), 108491.
DOI URL |
[10] | B. Zhao, Y. Li, Q. Zeng, L. Wang, J. Ding, R. Zhang, R. Che, Small 16 (2020), 2003502. |
[11] | B.D. Cullity, C.D. Graham, New Jersey, 2009, pp. 463. |
[12] |
Y. Yao, M. Zhu, C. Zhang, Y. Fan, J. Zhan, Adv. Powder Technol. 29 (2018) 1099-1105.
DOI URL |
[13] |
H. Zhang, C. Shi, Z. Jia, X. Liu, B. Xu, D. Zhang, G. Wu, J. Colloid Interface Sci. 584 (2020) 382-394.
DOI URL |
[14] |
I. Arief, S. Biswas, S. Bose, ACS Appl. Mater. Interfaces 9 (2017) 19202-19214.
DOI URL |
[15] | B. Liang, S. Wang, D. Kuang, L. Hou, B. Yu, L. Lin, L. Deng, H. Huang, J. He, Nanotechnology 29 (2018), 085604. |
[16] |
T. Hou, Z. Jia, S. He, Y. Su, X. Zhang, B. Xu, X. Liu, G. Wu, J. Colloid Interface Sci. 583 (2021) 321-330.
DOI URL |
[17] |
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
[18] |
X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, J. Mater. Sci. Technol. 72 (2021) 93-103.
DOI URL |
[19] |
H. Wu, J. Liu, H. Liang, D. Zang, Chem. Eng. J. 393 (2020), 124743.
DOI URL |
[20] |
W. Li, J. Lv, X. Zhou, J. Zheng, Y. Ying, L. Qiao, J. Yu, S. Che, J. Magn, Magn. Mater. 426 (2017) 504-509.
DOI URL |
[21] |
C. Feng, X. Liu, Y. Sun, C. Jin, Y. Lv, RSC Adv. 4 (2014) 22710-22715.
DOI URL |
[22] |
X.G. Liu, Z.Q. Ou, D.Y. Geng, Z. Han, J.J. Jiang, W. Liu, Z.D. Zhang, Carbon 48 (2010) 891-897.
DOI URL |
[23] |
S.J. Yan, L. Zhen, C.Y. Xu, J.T. Jiang, W.Z. Shao, J. Phys. D: Appl. Phys. 43 (2010), 245003.
DOI URL |
[24] |
Z. Liu, F. He, F. Gao, B. Ren, Y. Huang, J. Alloys Compd. 656 (2016) 51-57.
DOI URL |
[25] |
D. Han, N. Xiao, H. Hu, B. Liu, G. Song, H. Yan, RSC Adv. 5 (2015) 97944-97950.
DOI URL |
[26] |
J. Li, L. Wang, D. Zhang, Y. Qu, G. Wang, G. Tian, A. Liu, H. Yue, S. Feng, Mater. Chem. Front. 1 (2017) 1786-1794.
DOI URL |
[27] |
F. Wen, F. Zhang, J. Xiang, W. Hu, S. Yuan, Z. Liu, J. Magn. Magn. Mater. 343 (2013) 281-285.
DOI URL |
[28] |
C.Y. Chen, N.W. Pu, Y.M. Liu, S.Y. Huang, C.H. Wu, M.D. Ger, Y.J. Gong, Y.C. Chou, Compos. Pt. B-Eng. 114 (2017) 395-403.
DOI URL |
[29] |
X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4 (2016) 6816-6821.
DOI URL |
[30] |
X.J. Zhang, J.Q. Zhu, P.G. Yin, A.P. Guo, A.P. Huang, L. Guo, G.S. Wang, Adv. Funct. Mater. 28 (2018), 1800761.
DOI URL |
[31] |
W. Li, M. Zhou, F. Lu, H. Liu, Y. Zhou, J. Zhu, X. Zeng, J. Phys. D: Appl. Phys. 51 (2018), 235303.
DOI URL |
[32] |
C. Ma, B. Zhao, Q. Dai, B. Fan, G. Shao, R. Zhang, Adv. Powder Technol. 28 (2017) 438-442.
DOI URL |
[33] |
Y. Chen, S. Ma, X. Li, X. Zhao, X. Cheng, J. Liu, J. Alloys. Compd. 791 (2019) 307-315.
DOI URL |
[34] |
W. Dai, H. Luo, F. Chen, X. Wang, Y. Xiong, Y. Cheng, R. Gong, RSC Adv. 9 (2019) 10745-10753.
DOI URL |
[35] | R. Wang, P. Bai, B. Zhao, Z. Bai, X. Guo, R. Zhang, J. Mater. Sci. Mater. Electron.(2020), . |
[36] |
H. Zhao, Z. Zhu, C. Xiong, X. Xu, Q. Lin, J. Magn. Magn. Mater. 422 (2017) 402-406.
DOI URL |
[37] |
J. Lv, X. Liang, G. Ji, B. Quan, W. Liu, Y. Du, ACS Sustain. Chem. Eng. 6 (2018) 7239-7249.
DOI URL |
[38] |
J. Xu, X. Zhang, H. Yuan, S. Zhang, C. Zhu, X. Zhang, Y. Chen, Carbon 159 (2020) 357-365.
DOI URL |
[39] |
J. Li, D. Zhang, H. Qi, G. Wang, J. Tang, G. Tian, A. Liu, H. Yue, Y. Yu, S. Feng, RSC Adv. 8 (2018) 8393-8401.
DOI URL |
[40] | Y. Shen, Y. Wei, J. Ma, Y. Zhang, B. Ji, J. Tang, L. Zhang, P. Yan, X. Du, Ceram. Int. (2020), . |
[41] |
G. Li, Y. Guo, X. Sun, T. Wang, J. Zhou, J. He, J. Phys. Chem. Solids 73 (2012) 1268-1273.
DOI URL |
[42] |
X. Ding, Y. Huang, J. Wang, RSC Adv. 5 (2015) 64878-64885.
DOI URL |
[43] |
B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 28917-28925.
DOI URL |
[44] |
S. Wang, S. Peng, S. Zhong, W. Jiang, J. Mater. Chem. C 6 (2018) 9465-9474.
DOI URL |
[45] |
J. Zhang, R. Shu, Y. Wu, Z. Wan, M. Zheng, Synth. Met. 257 (2019), 116157.
DOI URL |
[46] |
H. Lv, H. Zhang, G. Ji, Z.J. Xu, ACS Appl. Mater. Interfaces 8 (2016) 6529-6538.
DOI URL |
[47] |
L. Liu, N. He, T. Wu, P. Hu, G. Tong, Chem. Eng. J. 355 (2019) 103-108.
DOI URL |
[48] |
M. Almasi Kashi, M.H. Mokarian, S. Alikhanzadeh Arani, J. Alloys Compd. 742 (2018) 413-420.
DOI URL |
[49] |
S. Golchinvafa, S.M. Masoudpanah, J. Alloys Compd. 787 (2019) 390-396.
DOI URL |
[50] | Q. Zhang, Y. Liu, X. Gao, K. Zhang, X. Chen, J. Optoelectron. Adv. Mater. 21 (2019) 418-423. |
[51] |
N. Chen, J.T. Jiang, C.Y. Xu, Y. Yuan, Y.X. Gong, L. Zhen, ACS Appl. Mater. Interfaces 9 (2017) 21933-21941.
DOI URL |
[52] |
C. Zhou, C. Wu, M. Yan, ACS Appl. Nano Mater. 1 (2018) 5179-5187.
DOI URL |
[53] |
C. Zhou, C. Wu, M. Yan, Chem.-Eng. J. 370 (2019) 988-996.
DOI URL |
[54] |
C. Zhou, C. Wu, D. Liu, M. Yan, Chem.-Eur. J. 25 (2019) 2234-2241.
DOI URL |
[55] |
Y. Zhang, H. Meng, Y. Shi, X. Zhang, C. Liu, Y. Wang, C. Gong, J. Zhang, Compos. Pt. B-Eng. 193 (2020), 108028.
DOI URL |
[56] |
G. He, Y. Duan, H. Pang, Nano-Micro Lett. 12 (2020) 57.
DOI URL |
[57] |
X. Li, L. Wang, W. You, L. Xing, L. Yang, X. Yu, J. Zhang, Y. Li, R. Che, Nanoscale 11 (2019) 13269-13281.
DOI URL |
[58] |
J. Ge, Y. Cui, L. Liu, R. Li, F. Meng, F. Wang, J. Alloys Compd. 831 (2020), 154442.
DOI URL |
[59] |
Y. Sun, H. Jia, J. Liu, H. Yu, X. Jiang, J. Mater. Sci.: Mater. Electron. 31 (2020) 11700-11713.
DOI URL |
[60] |
J. He, S. Liu, L. Deng, D. Shan, C. Cao, H. Luo, S. Yan, Appl. Surf. Sci. 504 (2020), 144210.
DOI URL |
[61] |
S. Yan, C. Cao, J. He, L. He, Z. Qu, J. Mater. Sci.: Mater. Electron. 30 (2019) 6537-6543.
DOI URL |
[62] |
L. Wang, X. Yu, M. Huang, W. You, Q. Zeng, J. Zhang, X. Liu, M. Wang, R. Che, Carbon 172 (2021) 516-528.
DOI URL |
[63] |
L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng, S. Dong, D. Zhang, X. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 6320-6331.
DOI URL |
[64] |
A. Xie, M. Sun, K. Zhang, W. Jiang, F. Wu, M. He, Phys. Chem. Chem. Phys. 18 (2016) 24931-24936.
DOI URL |
[65] |
A.K. Jonscher, J. Phys. D Appl. Phys. 32 (1999) R57-R70.
DOI URL |
[66] |
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji, Nano-Micro Lett. 12 (2020) 125.
DOI PMID |
[67] |
T. Hou, Z. Jia, A. Feng, Z. Zhou, X. Liu, H. Lv, G. Wu, J. Mater. Sci. Technol. 68 (2021) 61-69.
DOI URL |
[68] |
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu, Z. Zhang, G. Ji, Nano-Micro Lett. 12 (2020) 102.
DOI URL |
[69] |
A. Aharoni, J. Appl. Phys. 69 (1991) 7762-7764.
DOI URL |
[70] |
C. Kittel, Phys. Rev. 73 (1948) 155-161.
DOI URL |
[71] | A. Aharoni, Aharoni, Introduction to the Theory of Ferromagnetism, Clarendon, Oxford, 1996, pp. 135, ch. 7. |
[72] |
Y. Feng, T. Qiu, J. Alloys. Compd. 513 (2012) 455-459.
DOI URL |
[73] | B.D. Cullity, C.D. Graham, New Jersey, 2009, pp. 363. |
[1] | Tianqi Hou, Zirui Jia, Ailing Feng, Zehua Zhou, Xuehua Liu, Hualiang Lv, Guanglei Wu. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity [J]. J. Mater. Sci. Technol., 2021, 68(0): 61-69. |
[2] | Xinfeng Zhou, Zirui Jia, Xingxue Zhang, Bingbing Wang, Wei Wu, Xuehua Liu, Binghui Xu, Guanglei Wu. Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth [J]. J. Mater. Sci. Technol., 2021, 87(0): 120-132. |
[3] | Weiming Zhang, Biao Zhao, Na Ni, Huimin Xiang, Fu-Zhi Dai, Shijiang Wu, Yanchun Zhou. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 155-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||