J. Mater. Sci. Technol. ›› 2021, Vol. 90: 20-29.DOI: 10.1016/j.jmst.2021.02.031
• Research Article • Previous Articles Next Articles
W.-W. Xu*(), G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen
Received:
2020-10-30
Revised:
2021-01-29
Accepted:
2021-02-17
Published:
2021-11-05
Online:
2021-11-05
Contact:
W.-W. Xu
About author:
* E-mail address: wwxu306@xmu.edu.cn (W.-W. Xu).W.-W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen. Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys[J]. J. Mater. Sci. Technol., 2021, 90: 20-29.
Fig. 1. (a) Atomic ABC stacking ordering of L12 Cu3Au-type structure in (111) planes, showing the distinct partial dislocations associated with different types of planar faults. (b) Atomic arrangement of structures before and after slipping. (c) The schematic diagram of GSFE curve versus displacement along (111) planes in a unit of burgers vector (bp) for the L12 structure.
Magnetism | Phase | a0 (Å) | TC (K) | B (GPa) | ||||
---|---|---|---|---|---|---|---|---|
This work | Expt. | This work | Expt. | This work | Expt. | Other Calc. | ||
PM | Ni3Al | 3.572 | 3.568a | 27 | 41e | 184 | 171a | 184j |
FM | Co | 3.528 | 3.544b | 1352 | 1388f | 213 | 191h | 210k |
FM | Ni | 3.526 | 3.520c | 455 | 631g | 194 | 186c | 196k |
NM | Al | 4.046 | 4.050d | 0 | - | 81 | 76i | 74k |
Table 1 Lattice parameter a0 (Å), Curie temperature TC (K), and bulk modulus B (GPa) for Ni3Al, Co, Ni and Al, together with the available data from experiments [33], [34], [35], [36], [37], [38], [39], [40], [41] and other calculations [42,43].
Magnetism | Phase | a0 (Å) | TC (K) | B (GPa) | ||||
---|---|---|---|---|---|---|---|---|
This work | Expt. | This work | Expt. | This work | Expt. | Other Calc. | ||
PM | Ni3Al | 3.572 | 3.568a | 27 | 41e | 184 | 171a | 184j |
FM | Co | 3.528 | 3.544b | 1352 | 1388f | 213 | 191h | 210k |
FM | Ni | 3.526 | 3.520c | 455 | 631g | 194 | 186c | 196k |
NM | Al | 4.046 | 4.050d | 0 | - | 81 | 76i | 74k |
Fig. 2. Calculated GSFE curves versus displacement along (111) planes in a unit of burgers vector (bp) for (a) Ni3Al, (b) Ni, (c) Al, and (d) Co, together with the available data from experiments [19,[44], [45], [46], [47]] and other calculations [25,36,[48], [49], [50], [51]].
Phase | Source | GSFE (mJ/m2) | |||||||
---|---|---|---|---|---|---|---|---|---|
γUCISF/γUSF | γCISF/γISF | γUCESF/γUESF | γCESF/γESF | γUAPB | γAPB | γUSISF | γSISF | ||
NI3Al | This work | 273 | 251 | 579 | 525 | 724 | 240 | 286 | 104 |
Other Calc.[ | - | 208 | - | - | - | 190 | - | 59 | |
Other Calc.[ | - | 208 | - | 485 | - | 263 | - | 61 | |
Expt.[ | - | 236 | - | - | - | 195 | - | - | |
Expt.[ | - | 250 | - | - | - | 237 | - | 78-87 | |
Co | This work | 265 | -113 | 191 | -147 | - | - | - | - |
Other Calc.[ | 293 | -105 | 245 | -125 | - | - | - | - | |
Other Calc.[ | 152 | -2 | 179 | 0 | - | - | - | - | |
Al | This work | 169 | 109 | 235 | 145 | - | - | - | - |
Other Calc.[ | 177 | 144 | 232 | 144 | - | - | - | - | |
Expt.[ | - | 166 150 | - | 150 | - | - | - | - | |
Expt.[ | - | 135 | - | - | - | - | - | - | |
Ni | This work | 331 | 150 | 415 | 146 | - | - | - | - |
Other Calc.[ | 305 | 168 | 395 | 150 | - | - | - | - | |
Expt.[ | - | 128 | - | 86 | - | - | - | - | |
Expt.[ | - | 125 | - | - | - | - | - |
Table 2 Calculated generalized stacking fault energies (GSFEs) (mJ/m2) of Ni3Al, Co, Ni, and Al, together with the available data from experiments [19,[44], [45], [46], [47]] and other calculations [25,36,[48], [49], [50], [51]].
Phase | Source | GSFE (mJ/m2) | |||||||
---|---|---|---|---|---|---|---|---|---|
γUCISF/γUSF | γCISF/γISF | γUCESF/γUESF | γCESF/γESF | γUAPB | γAPB | γUSISF | γSISF | ||
NI3Al | This work | 273 | 251 | 579 | 525 | 724 | 240 | 286 | 104 |
Other Calc.[ | - | 208 | - | - | - | 190 | - | 59 | |
Other Calc.[ | - | 208 | - | 485 | - | 263 | - | 61 | |
Expt.[ | - | 236 | - | - | - | 195 | - | - | |
Expt.[ | - | 250 | - | - | - | 237 | - | 78-87 | |
Co | This work | 265 | -113 | 191 | -147 | - | - | - | - |
Other Calc.[ | 293 | -105 | 245 | -125 | - | - | - | - | |
Other Calc.[ | 152 | -2 | 179 | 0 | - | - | - | - | |
Al | This work | 169 | 109 | 235 | 145 | - | - | - | - |
Other Calc.[ | 177 | 144 | 232 | 144 | - | - | - | - | |
Expt.[ | - | 166 150 | - | 150 | - | - | - | - | |
Expt.[ | - | 135 | - | - | - | - | - | - | |
Ni | This work | 331 | 150 | 415 | 146 | - | - | - | - |
Other Calc.[ | 305 | 168 | 395 | 150 | - | - | - | - | |
Expt.[ | - | 128 | - | 86 | - | - | - | - | |
Expt.[ | - | 125 | - | - | - | - | - |
Fig. 3. Calculated GSFE curves vs displacement along (111) planes in a unit of burgers vector (bp) for four typical phases of Ni3Al, (Co0.6, Ni0.4)3(Al, W), Co3(Al, W), and Co3Al, together with the available data [10,[24], [25], [26],54,55] for Co3(Al, W).
Fig. 4. Calculated stable and unstable GSFEs as a function of Ni or W contents for (a) (Co1-x, Nix)3(Al, W), (b) Co3(Al1-y, Wy), and (c) Ni3(Al1-y, Wy) phases. Note that the solid line represents the stable GSFEs and the dotted line represents the unstable GSFEs.
Fig. 5. Stacking fault energy barriers of CISF, CESF, APB, and SISF as a function of Ni or W contents for (Co1-x, Nix)3(Al, W), Co3(Al1-y, Wy), and Ni3(Al1-y, Wy) phases.
Phase | x (or y) | GSFE barriers (mJ/m2) | τα | TGB | |||
---|---|---|---|---|---|---|---|
ΔγCISF | ΔγCESF | ΔγAPB | ΔγSISF | ||||
0.00 | 529 | 541 | 631 | 139 | 0.74 | 0.84 | |
(Co1-x, Nix)3(Al, W) | 0.30 | 549 | 517 | 565 | 92 | 0.71 | 0.74 |
0.40 | 546 | 512 | 542 | 82 | 0.71 | 0.71 | |
0.50 | 546 | 513 | 520 | 72 | 0.70 | 0.68 | |
0.70 | 543 | 502 | 458 | 49 | 0.69 | 0.65 | |
0.85 | 510 | 485 | 396 | 37 | 0.69 | 0.66 | |
1.00 | 373 | 434 | 317 | 88 | 0.72 | 0.82 | |
Co3(Al1-y, Wy) | 0.00 | 94 | 174 | 400 | 53 | 0.80 | 1.18 |
0.25 | 335 | 414 | 568 | 181 | 0.78 | 1.01 | |
0.40 | 455 | 490 | 607 | 161 | 0.76 | 0.91 | |
0.47 | 504 | 524 | 623 | 146 | 0.74 | 0.86 | |
0.50 | 529 | 541 | 631 | 139 | 0.74 | 0.84 | |
0.53 | 556 | 558 | 639 | 132 | 0.74 | 0.82 | |
Ni3(Al1-y, Wy) | 0.00 | 273 | 328 | 473 | 46 | 0.69 | 0.74 |
0.05 | 317 | 350 | 475 | 47 | 0.68 | 0.70 | |
0.10 | 358 | 375 | 479 | 46 | 0.68 | 0.67 | |
0.20 | 434 | 430 | 478 | 39 | 0.67 | 0.62 | |
0.30 | 499 | 474 | 457 | 35 | 0.67 | 0.61 | |
0.40 | 463 | 472 | 387 | 57 | 0.68 | 0.65 | |
0.50 | 373 | 434 | 317 | 88 | 0.72 | 0.82 |
Table 3 Calculated stacking fault energy barriers (mJ/m2) and twinning ability criterion factor (τα and TGB) of (Co1-x, Nix)3(Al, W), Co3(Al1-y, Wy), and Ni3(Al1-y, Wy) phases.
Phase | x (or y) | GSFE barriers (mJ/m2) | τα | TGB | |||
---|---|---|---|---|---|---|---|
ΔγCISF | ΔγCESF | ΔγAPB | ΔγSISF | ||||
0.00 | 529 | 541 | 631 | 139 | 0.74 | 0.84 | |
(Co1-x, Nix)3(Al, W) | 0.30 | 549 | 517 | 565 | 92 | 0.71 | 0.74 |
0.40 | 546 | 512 | 542 | 82 | 0.71 | 0.71 | |
0.50 | 546 | 513 | 520 | 72 | 0.70 | 0.68 | |
0.70 | 543 | 502 | 458 | 49 | 0.69 | 0.65 | |
0.85 | 510 | 485 | 396 | 37 | 0.69 | 0.66 | |
1.00 | 373 | 434 | 317 | 88 | 0.72 | 0.82 | |
Co3(Al1-y, Wy) | 0.00 | 94 | 174 | 400 | 53 | 0.80 | 1.18 |
0.25 | 335 | 414 | 568 | 181 | 0.78 | 1.01 | |
0.40 | 455 | 490 | 607 | 161 | 0.76 | 0.91 | |
0.47 | 504 | 524 | 623 | 146 | 0.74 | 0.86 | |
0.50 | 529 | 541 | 631 | 139 | 0.74 | 0.84 | |
0.53 | 556 | 558 | 639 | 132 | 0.74 | 0.82 | |
Ni3(Al1-y, Wy) | 0.00 | 273 | 328 | 473 | 46 | 0.69 | 0.74 |
0.05 | 317 | 350 | 475 | 47 | 0.68 | 0.70 | |
0.10 | 358 | 375 | 479 | 46 | 0.68 | 0.67 | |
0.20 | 434 | 430 | 478 | 39 | 0.67 | 0.62 | |
0.30 | 499 | 474 | 457 | 35 | 0.67 | 0.61 | |
0.40 | 463 | 472 | 387 | 57 | 0.68 | 0.65 | |
0.50 | 373 | 434 | 317 | 88 | 0.72 | 0.82 |
Fig. 6. Twinning ability criterion including τα and TGB values as a function of Ni or W contents for (Co1-x, Nix)3(Al, W), Co3(Al1-y, Wy), and Ni3(Al1-y, Wy) phases.
Fig. 7. Ratio of planar defect energy of Ep (Ep=γAPB/γSISF) and ΔEp (ΔEp=ΔγAPB/ΔγSISF) as a function of Ni or W contents for (Co1-x, Nix)3(Al, W), Co3(Al1-y, Wy), and Ni3(Al1-y, Wy) phases.
Fig. 8. (a) The competition among the different deformation modes in terms of the EEBs as a function of shear direction θ in Co3(Al, W) and Ni3Al. (b) Mapping of competition among different deformation modes as a function of θ for (Co1-x, Nix)3(Al, W) phase. (c) Mapping of competition among different deformation modes as a function of θ for (Co1-x, Nix)3(Al, W), Co3(Al1-y, Wy), and Ni3(Al1-y, Wy) phases. The deformation mode with a smaller effective energy barrier (Δγ?) is preferred to be activated.
Phase | x/y | θ1 (°) | θ2 (°) |
---|---|---|---|
(Co1-x,Nix)3(Al, W) | 0.00 | 37.6 | 42.1 |
0.30 | 34.4 | 38.7 | |
0.40 | 32.8 | 38.1 | |
0.50 | 30.7 | 37.3 | |
0.70 | 25.5 | 35.6 | |
0.85 | 20.2 | 34.9 | |
1.00 | 37.6 | 42.1 | |
Co3(Al1-y, Wy) | 0.00 | >60.0 | 37.0 |
0.25 | 45.2 | 48.2 | |
0.40 | 40.5 | 44.8 | |
0.47 | 38.5 | 43.0 | |
0.50 | 37.6 | 42.1 | |
0.53 | 36.7 | 41.3 | |
Ni3(Al1-y, Wy) | 0.00 | 47.4 | 35.1 |
0.05 | 44.7 | 35.2 | |
0.10 | 41.9 | 35.0 | |
0.20 | 35.2 | 34.2 | |
0.30 | 28.2 | 34.0 | |
0.40 | 20.3 | 37.8 | |
0.50 | 14.9 | 45.6 |
Table 4 Angle values for the intersections of CESF-APB (labeled as θ1) and APB-SISF (labeled as θ2) in the (Co1-x, Nix)3(Al, W), Co3(Al1-y, Wy), and Ni3(Al1-y, Wy) phases.
Phase | x/y | θ1 (°) | θ2 (°) |
---|---|---|---|
(Co1-x,Nix)3(Al, W) | 0.00 | 37.6 | 42.1 |
0.30 | 34.4 | 38.7 | |
0.40 | 32.8 | 38.1 | |
0.50 | 30.7 | 37.3 | |
0.70 | 25.5 | 35.6 | |
0.85 | 20.2 | 34.9 | |
1.00 | 37.6 | 42.1 | |
Co3(Al1-y, Wy) | 0.00 | >60.0 | 37.0 |
0.25 | 45.2 | 48.2 | |
0.40 | 40.5 | 44.8 | |
0.47 | 38.5 | 43.0 | |
0.50 | 37.6 | 42.1 | |
0.53 | 36.7 | 41.3 | |
Ni3(Al1-y, Wy) | 0.00 | 47.4 | 35.1 |
0.05 | 44.7 | 35.2 | |
0.10 | 41.9 | 35.0 | |
0.20 | 35.2 | 34.2 | |
0.30 | 28.2 | 34.0 | |
0.40 | 20.3 | 37.8 | |
0.50 | 14.9 | 45.6 |
[1] |
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Science 312 (2006) 90-91.
PMID |
[2] |
A. Suzuki, T.M. Pollock, Acta Mater 56 (2008) 1288-1297.
DOI URL |
[3] |
Y.M. Eggeler, M.S. Titus, A. Suzuki, T.M. Pollock, Acta Mater 77 (2014) 352-359.
DOI URL |
[4] |
I. Povstugar, P.P. Choi, S. Neumeier, A. Bauer, C.H. Zenk, M. Göken, D. Raabe, Acta Mater 78 (2014) 78-85.
DOI URL |
[5] |
A. Suzuki, H. Inui, T.M. Pollock, Annu. Rev. Mater. Res. 45 (2015) 345-368.
DOI URL |
[6] |
S.K. Makineni, B. Nithin, K. Chattopadhyay, Acta Mater 85 (2015) 85-94.
DOI URL |
[7] |
M.S. Titus, Y.M. Eggeler, A. Suzuki, T.M. Pollock, Acta Mater 82 (2015) 530-539.
DOI URL |
[8] |
W.W. Xu, Y. Wang, C.P. Wang, X.J. Liu, Z.K. Liu, Scr. Mater. 100 (2015) 5-8.
DOI URL |
[9] |
Y.M. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, E. Spiecker, Acta Mater 113 (2016) 335-349.
DOI URL |
[10] |
J.E. Saal, C. Wolverton, Acta Mater 103 (2016) 57-62.
DOI URL |
[11] |
W.W. Xu, S.L. Shang, C.P. Wang, T.Q. Gang, Y.F. Huang, L.J. Chen, X.J. Liu, Z.K. Liu, Mater. Des. 142 (2018) 139-148.
DOI URL |
[12] |
C.A. Stewart, S.P. Murray, A. Suzuki, T.M. Pollock, C.G. Levi, Mater. Des. 189 (2020) 108445.
DOI URL |
[13] | T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki, JOM 62 (2010) 58-63. |
[14] |
K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Mater. Trans. 49 (2008) 1474-1479.
DOI URL |
[15] |
W. Li, L. Li, S. Antonov, Q. Feng, Mater. Des. 180 (2019) 107912.
DOI URL |
[16] |
C.H. Zenk, S. Neumeier, N.M. Engl, S.G. Fries, O. Dolotko, M. Weiser, S. Virtanen, M. Göken, Scr. Mater. 112 (2016) 83-86.
DOI URL |
[17] |
M.S. Titus, A. Suzuki, T.M. Pollock, Scr. Mater. 66 (2012) 574-577.
DOI URL |
[18] |
N.L. Okamoto, T. Oohashi, H. Adachi, K. Kishida, H. Inui, P. Veyssière, Philos. Mag. 91 (2011) 3667-3684.
DOI URL |
[19] |
T. Kruml, E. Conforto, B.L. Piccolo, D. Caillard, J.L. Martin, Acta Mater 50 (2002) 5091-5101.
DOI URL |
[20] |
K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, H. Inui, Philos. Mag. 92 (2012) 4011-4027.
DOI URL |
[21] |
M.S. Titus, A. Mottura, G.B. Viswanathan, A. Suzuki, M.J. Mills, T.M. Pollock, Acta Mater 89 (2015) 423-437.
DOI URL |
[22] |
L. Feng, D. Lv, R.K. Rhein, J.G. Goiri, M.S. Titus, A.V.d. Ven, T.M. Pollock, Y. Wang, Acta Mater 161 (2018) 99-109.
DOI URL |
[23] |
F. Pyczak, A. Bauer, M. Goken, S. Neumeier, U. Lorenz, M. Oehring, N. Schell, A. Schreyer, A. Stark, F. Symanzik, Mater. Sci. Eng. A 571 (2013) 13-18.
DOI URL |
[24] |
H. Hasan, P. Mlkvik, P.D. Haynes, V.A. Vorontsov, Materialia 9 (2020) 100555.
DOI URL |
[25] |
K.V. Vamsi, S. Karthikeyan, Scr. Mater. 130 (2017) 269-273.
DOI URL |
[26] |
A. Mottura, A. Janotti, T.M. Pollock, Intermetallics 28 (2012) 138-143.
DOI URL |
[27] |
V.A. Vorontsov, R.E. Voskoboinikov, C.M.F. Rae,Philos.Mag. 92 (2012) 608-634.
DOI URL |
[28] | L. Vitos, Springer, 2007. |
[29] |
L. Vitos, Phys. Rev. B 64 (2001) 014107.
DOI URL |
[30] |
B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks, H. Winter, J. Phys. F: Met. Phys. 15 (1985) 1337-1386.
DOI URL |
[31] |
P. Soven, Phys. Rev. 156 (1967) 809-813.
DOI URL |
[32] |
B.L. Gyorffy, Phys. Rev. B 5 (1972) 2382-2384.
DOI URL |
[33] |
R. Gaudoin, W.M.C. Foulkes, G. Rajagopal, J. Phys.: Condens. Matter 14 (2002) 8787-8793.
DOI URL |
[34] |
T.C. Leung, C.T. Chan, B.N. Harmon, Phys. Rev. B 44 (1991) 2923-2927.
PMID |
[35] |
R.V. Colvin, S. Arajs, J. Phys. Chem. Solids 26 (1965) 435-437.
DOI URL |
[36] |
L.Y. Tian, R. Lizarraga, H. Larsson, E. Holmstrom, L. Vitos, Acta Mater 136 (2017) 215-223.
DOI URL |
[37] |
D.J. Siegel, J.C. Hamilton, Phys. Rev. B 68 (2003) 094105.
DOI URL |
[38] |
D.L. Connelly, J.S. Loomis, D.E. Mapother, Phys. Rev. B 3 (1971) 924-934.
DOI URL |
[39] |
G.Y. Guo, Y.K. Wang, L.S. Hsu, J. Magn. Magn. Mater. 239 (2002) 91-93.
DOI URL |
[40] |
H. Sasakura, K. Suzuki, Y. Masuda, J. Phys. Soc. Jpn. 53 (1984) 754-759.
DOI URL |
[41] |
B. Hammer, K.W. Jacobsen, V. Milman, M.C. Payne, J. Phys.: Condens. Matter 4 (1992) 10453-10460.
DOI URL |
[42] |
X.H. Luan, H.B. Qin, F.M. Liu, Z.B. Dai, Y.Y. Yi, Q. Li, Crystals 8 (2018) 307.
DOI URL |
[43] |
S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, Y. Wang, Z.K. Liu, Comput. Mater. Sci. 48 (2010) 813-826.
DOI URL |
[44] |
N. Bernstein, E.B. Tadmor, Phys. Rev. B 69 (2004) 094116.
DOI URL |
[45] |
C.B. Carter, S.M. Holmes, Philos. Mag. 35 (2006) 1161-1172.
DOI URL |
[46] | R.E. Voskoboinikov, C.M.F. Rae, Mater. Sci. Eng. 3 (2009) 012009. |
[47] | R.E. Smallman, P.S. Dobson, Metall. Trans. 1 (1969) 2383-2389. |
[48] | L. Zhang, C. Lu, A.K. Tieu, X. Zhao, L. Pei, G. Michal, Chin. Phy. B 24 (2015) 088106. |
[49] |
L.L. Liu, X.Z. Wu, R. Wang, W.G. Li, Q. Liu, Chin. Phys. B 24 (2015) 077102.
DOI URL |
[50] |
T.L. Achmad, W.X. Fu, H. Chen, C. Zhang, Z.G. Yang, Comput. Mater. Sci. 121 (2016) 86-96.
DOI URL |
[51] |
T. Cai, Z.J. Zhang, P. Zhang, J.B. Yang, Z.F. Zhang, J. Appl. Phys. 116 (2014) 163512.
DOI URL |
[52] | V. Paidar, V. Vitek, in: J. Westbrook, R. Fleischer (Eds.), Intermetallic Com- pounds-Principles and Practice, John Wiley Chichester, 2002, pp. 437-467. |
[53] |
Q. Yao, H. Xing, J. Sun, Appl. Phys. Lett. 89 (2006) 161906.
DOI URL |
[54] |
N.L. Okamoto, T. Oohashi, H. Adachi, K. Kishida, H. Inui, P. Veyssière, Philos. Mag. 91 (2011) 3667-3684.
DOI URL |
[55] |
J.Y. Guédou, M. Knop, V.A. Vorontsov, M.C. Hardy, D. Dye, J. Choné, MATEC Web Conf 14 (2014) 18003.
DOI URL |
[56] |
C. Zhang, K. Feng, Z.G. Li, F.G. Lu, J. Huang, Y.X. Wu, P.K. Chu, Mater. Des. 111 (2016) 575-583.
DOI URL |
[57] | K.A. Christofidou, N.G. Jones, E.J. Pickering, R. Flacau, M.C. Hardy, H.J. Stone, J. Alloys Compd. 688 (2016) 542-552. |
[58] |
E.B. Tadmor, N. Bernstein, J. Mech. Phys. Solids 52 (2004) 2507-2519.
DOI URL |
[59] |
R.J. Asaro, S. Suresh, Acta Mater 53 (2005) 3369-3382.
DOI URL |
[60] |
I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, H.J. Maier, Acta Mater 48 (2000) 1345-1359.
DOI URL |
[61] |
M. Jo, Y.M. Koo, B.J. Lee, B. Johansson, L. Vitos, S.K. Kwon, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 6560-6565.
DOI URL |
[62] |
S.Y. Yuan, Z.H. Jiang, J.Z. Liu, Y. Tang, Y. Zhang, Mater. Res. Lett. 6 (2018) 6 83-6 88.
DOI URL |
[63] |
D.E. Albert, G.T. Gray, Philos. Mag. A 70 (1994) 145-158.
DOI URL |
[64] | B.H. Kear, J.M. Oblak, Le Journal de Physique Colloques 35 (1974) C7-35-C37-45. |
[65] |
J. Courbon, F. Louchet, Phys. Status Solidi A 137 (1993) 417-428.
DOI URL |
[66] |
B. Décamps, S. Raujol, A. Coujou, F. Pettinari-Sturmel, N. Clément, D. Locq, P. Caron, Philos. Mag. 84 (2004) 91-107.
DOI URL |
[1] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[2] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
[3] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[4] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[5] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
[6] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
[7] | K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang, Z.F. Zhang. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals [J]. J. Mater. Sci. Technol., 2020, 57(0): 159-171. |
[8] | T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53(0): 61-65. |
[9] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
[10] | Seok Gyu Lee, Bohee Kim, Min Cheol Jo, Kyeong-Min Kim, Junghoon Lee, Jinho Bae, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels [J]. J. Mater. Sci. Technol., 2020, 50(0): 21-30. |
[11] | Zhang Zhefeng, Li Linlin, Zhang Zhenjun, Zhang Peng. Twin boundary: Controllable interface to fatigue cracking. [J]. J. Mater. Sci. Technol., 2017, 33(7): 603-606. |
[12] | Tian Sugui,Zhu Xinjie,Wu Jing,Yu Huichen,Shu Delong,Qian Benjiang. Influence of Temperature on Stacking Fault Energy and Creep Mechanism of a Single Crystal Nickel-based Superalloy [J]. J. Mater. Sci. Technol., 2016, 32(8): 790-798. |
[13] | Hong Yu,Yugui Zheng,Zhiming Yao. Cavitation Erosion Corrosion Behaviour of Manganese-nickel-aluminum Bronze in Comparison with Manganese-brass [J]. J Mater Sci Technol, 2009, 25(06): 758-766. |
[14] | YANG Zhi'an SHI Changxu XIAO Yaotian Institute of Metal Research,Academia Sinica,Shenyang,110015,China.. Variation in Creep Rupture of γ′ Strengthened Superalloys with Stacking Fault Energy of Matrices [J]. J Mater Sci Technol, 1990, 6(4): 250-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||