J. Mater. Sci. Technol. ›› 2021, Vol. 88: 79-89.DOI: 10.1016/j.jmst.2021.02.018
Previous Articles Next Articles
G.Y. Zhu, Y.Y. Li, B.S. Hou, Q.H. Zhang, G.A. Zhang*(
)
Received:2020-10-14
Revised:2021-02-03
Accepted:2021-02-23
Published:2021-03-19
Online:2021-03-19
Contact:
G.A. Zhang
About author:*E-mail address: zhangguoan@gmail.com (G.A. Zhang).G.Y. Zhu, Y.Y. Li, B.S. Hou, Q.H. Zhang, G.A. Zhang. Corrosion behavior of 13Cr stainless steel under stress and crevice in high pressure CO2/O2 environment[J]. J. Mater. Sci. Technol., 2021, 88: 79-89.
Fig. 1. (a) The stress-strain behavior of 13Cr stainless steel in the air and (b) the geometric dimension of tensile sample used for electrochemical tests.
Fig. 3. (a) Schematic diagram of galvanic current and coupled potential measurements between the samples inside and outside crevice and (b) setup for in situ electrochemical measurements for 13Cr stainless steel in high pressure CO2/O2 environment.
| Condition | Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-ndl) | ndl | Rct (Ω cm2) | Qf (Ω-1 cm-2 s-nf) | nf | Rf (Ω cm2) | Rp (Ω cm2) |
|---|---|---|---|---|---|---|---|---|---|
| 0 MPa Stress | 2 | 1.13 | 1.817 × 10-4 | 0.79 | 7510 | 1.869 × 10-4 | 0.91 | 34,630 | 42,140 |
| 8 | 1.11 | 1.756 × 10-4 | 0.80 | 8599 | 1.945 × 10-4 | 0.92 | 37,220 | 45,819 | |
| 16 | 1.11 | 1.797 × 10-4 | 0.80 | 8241 | 1.780 × 10-4 | 0.92 | 38,090 | 46,331 | |
| 24 | 1.14 | 1.291 × 10-4 | 0.83 | 23,934 | 3.750 × 10-4 | 0.93 | 34,580 | 58,514 | |
| 48 | 1.17 | 1.198 × 10-4 | 0.84 | 33,780 | 4.460 × 10-4 | 0.92 | 37,129 | 70,909 | |
| 200 MPa Stress | 48 | 1.16 | 2.750 × 10-4 | 0.80 | 3412 | 1.775 × 10-3 | 0.54 | 3380 | 6792 |
| 300 MPa Stress | 48 | 1.37 | 2.097 × 10-3 | 0.68 | 2976 | 9.747 × 10-3 | 0.68 | 1927 | 4903 |
| 0 MPa Stress + 0.1 MPa O2 | 48 | 1.81 | 1.006 × 10-4 | 0.82 | 71,860 | 3.026 × 10-4 | 0.94 | 152,340 | 224,200 |
| 200 MPa Stress + 0.1 MPa O2 | 48 | 1.52 | 1.076 × 10-3 | 0.70 | 1500 | 2.026 × 10-3 | 0.71 | 7605 | 9105 |
Table 1 The fitted electrochemical parameters from the EIS of 13Cr stainless steel in the solution under different conditions.
| Condition | Time (h) | Rs (Ω cm2) | Qdl (Ω-1 cm-2 s-ndl) | ndl | Rct (Ω cm2) | Qf (Ω-1 cm-2 s-nf) | nf | Rf (Ω cm2) | Rp (Ω cm2) |
|---|---|---|---|---|---|---|---|---|---|
| 0 MPa Stress | 2 | 1.13 | 1.817 × 10-4 | 0.79 | 7510 | 1.869 × 10-4 | 0.91 | 34,630 | 42,140 |
| 8 | 1.11 | 1.756 × 10-4 | 0.80 | 8599 | 1.945 × 10-4 | 0.92 | 37,220 | 45,819 | |
| 16 | 1.11 | 1.797 × 10-4 | 0.80 | 8241 | 1.780 × 10-4 | 0.92 | 38,090 | 46,331 | |
| 24 | 1.14 | 1.291 × 10-4 | 0.83 | 23,934 | 3.750 × 10-4 | 0.93 | 34,580 | 58,514 | |
| 48 | 1.17 | 1.198 × 10-4 | 0.84 | 33,780 | 4.460 × 10-4 | 0.92 | 37,129 | 70,909 | |
| 200 MPa Stress | 48 | 1.16 | 2.750 × 10-4 | 0.80 | 3412 | 1.775 × 10-3 | 0.54 | 3380 | 6792 |
| 300 MPa Stress | 48 | 1.37 | 2.097 × 10-3 | 0.68 | 2976 | 9.747 × 10-3 | 0.68 | 1927 | 4903 |
| 0 MPa Stress + 0.1 MPa O2 | 48 | 1.81 | 1.006 × 10-4 | 0.82 | 71,860 | 3.026 × 10-4 | 0.94 | 152,340 | 224,200 |
| 200 MPa Stress + 0.1 MPa O2 | 48 | 1.52 | 1.076 × 10-3 | 0.70 | 1500 | 2.026 × 10-3 | 0.71 | 7605 | 9105 |
Fig. 8. The polarization curves of 13Cr stainless steel inside crevice after 48 h of immersion in the solution under various stresses and 4 MPa CO2 without or with 0.1 MPa O2.
| Condition | Epit (V vs. Ag/AgCl (0.1 M KCl)) | Ip (A cm-2) |
|---|---|---|
| 0 MPa stress | 0.2233 | 2.367 × 10-6 |
| 200 MPa stress | -0.1685 | 2.692 × 10-5 |
| 300 MPa stress | -0.4927 | 6.426 × 10-5 |
| 0 MPa stress + 0.1 MPa O2 | 0.3292 | 2.096 × 10-6 |
| 200 MPa stress + 0.1 MPa O2 | -0.2108 | 3.221 × 10-6 |
Table 2 The parameters of Epit and Ip obtained from the polarization curves.
| Condition | Epit (V vs. Ag/AgCl (0.1 M KCl)) | Ip (A cm-2) |
|---|---|---|
| 0 MPa stress | 0.2233 | 2.367 × 10-6 |
| 200 MPa stress | -0.1685 | 2.692 × 10-5 |
| 300 MPa stress | -0.4927 | 6.426 × 10-5 |
| 0 MPa stress + 0.1 MPa O2 | 0.3292 | 2.096 × 10-6 |
| 200 MPa stress + 0.1 MPa O2 | -0.2108 | 3.221 × 10-6 |
| Condition | Nd (cm-3) |
|---|---|
| 0 MPa Stress | 6.16 × 1021 |
| 200 MPa Stress | 1.08 × 1022 |
| 200 MPa Stress + 0.1 MPa O2 | 3.52 × 1021 |
Table 3 Donor densities of the passive film of 13 Cr stainless steel under different conditions.
| Condition | Nd (cm-3) |
|---|---|
| 0 MPa Stress | 6.16 × 1021 |
| 200 MPa Stress | 1.08 × 1022 |
| 200 MPa Stress + 0.1 MPa O2 | 3.52 × 1021 |
Fig. 10. Time dependence of galvanic current between the stressed sample inside crevice (WE1) and the unstressed sample outside crevice (WE2) under different conditions.
Fig. 11. The respective potentials and their coupled potential of the stressed sample inside crevice and the unstressed sample outside crevice: (a) 200 MPa stress; (b) 200 MPa stress + 0.1 MPa O2.
Fig. 12. XPS spectra of the stressed sample (200 MPa) inside crevice and the unstressed sample outside crevice after corrosion in the solution with 4 MPa CO2 for 48 h: (a) Fe 2p3/2, (b) Cr 2p3/2, (c) O 1s.
Fig. 13. XPS spectra of the stressed sample (200 MPa) inside crevice and the unstressed sample outside crevice after corrosion in the solution under 4 MPa CO2 with 0.1 MPa O2 for 48 h: (a) Fe 2p3/2, (b) Cr 2p3/2, (c) O 1s.
Fig. 14. Schematic diagram of the crevice corrosion of 13 Cr stainless steel with applied stress at different stages: (a) induction period, (b) rapid development, (c) stable development period.
| [1] |
Y.-J. Tan, S. Bailey, B. Kinsella, Corros. Sci. 43 (2001) 1919-1929.
DOI URL |
| [2] |
S.D. Zhu, J.F. Wei, R. Cai, Z.Q. Bai, G.S. Zhou, Eng. Fail. Anal. 18 (2011) 2222-2231.
DOI URL |
| [3] |
C.R.F. Azevedo, Eng. Fail. Anal. 14 (2007) 978-994.
DOI URL |
| [4] |
A.V. Ioffe, T.V. Tetyueva, V.A. Revyakin, E.A. Borisenkova, S.A. Knyaz’kin, T.V. Denisova, Met. Sci. Heat Treat. 54 (2013) 512-518.
DOI URL |
| [5] |
Y.Z. Li, X.P. Guo, G.A. Zhang, Corros. Sci. 123 (2017) 228-242.
DOI URL |
| [6] |
H. Han, S. Li, D. Ma, Z. Ji, H. Yu, X. Chen, Petroleum Explor. Dev. 45 (2018) 903-909.
DOI URL |
| [7] |
D. Sidorin, D. Pletcher, B. Hedges, Electrochim. Acta 50 (2005) 4109-4116.
DOI URL |
| [8] |
Z.F. Yin, X.Z. Wang, L. Liu, J.Q. Wu, Y.Q. Zhang, J. Mater. Eng. Perform. 20 (2011) 1330-1335.
DOI URL |
| [9] |
X. Li, Y. Zhao, W. Qi, J. Xie, J. Wang, B. Liu, G. Zeng, T. Zhang, F. Wang, Appl. Surf. Sci. 469 (2019) 146-161.
DOI URL |
| [10] |
Q. Lu, L. Wang, J. Xin, H. Tian, X. Wang, Z. Cui, Constr. Build. Mater. 238 (2020), 117763.
DOI URL |
| [11] |
Y. Liu, D. Zhu, D. Pierre, J.L. Gilbert, Acta Biomater. 97 (2019) 565-577.
DOI URL |
| [12] |
X. Wu, Y. Liu, Y. Sun, N. Dai, J. Li, Y. Jiang, J. Mater. Sci. Technol. 64 (2020) 29-37.
DOI URL |
| [13] |
F. Ning, J. Tan, X. Wu, J. Mater. Sci. Technol. 47 (2020) 76-87.
DOI URL |
| [14] |
G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, J. Mater. Sci. Technol. 30 (2014) 253-258.
DOI URL |
| [15] | L. Stockert, H. Böhni, Mater. Sci.Forum 44- 45 (1991) 313-328. |
| [16] |
E. Shojaei, M. Mirjalili, M.H. Moayed, Corros. Sci. 156 (2019) 96-105.
DOI |
| [17] |
Q. Hu, Y.B. Qiu, X.P. Guo, J.Y. Huang, Corros. Sci. 52 (2010) 1205-1212.
DOI URL |
| [18] |
M. Nishimoto, J. Ogawa, I. Muto, Y. Sugawara, N. Hara, Corros. Sci. 106 (2016) 298-302.
DOI URL |
| [19] |
H.W. Pickering, Corros. Sci. 29 (1989) 325-341.
DOI URL |
| [20] |
J.W. Oldfield, W.H. Sutton, Br. Corros. J. 13 (1978) 13-22.
DOI URL |
| [21] |
J.W. Oldfield, W.H. Sutton, Br. Corros. J. 13 (1978) 104-111.
DOI URL |
| [22] |
Q. Hu, G. Zhang, Y. Qiu, X. Guo, Corros. Sci. 53 (2011) 4065-4072.
DOI URL |
| [23] |
Z. Wang, F. Xie, D. Wang, J. Liu, Eng. Fail. Anal. 121 (2021), 105109.
DOI URL |
| [24] |
F.M.F. Serafim, W.O. Alabi, I.N.A. Oguocha, A.G. Odeshi R. Evitts R.J. Gerspacher E.G. Ohaeri, Corros. Sci. 178 (2021), 109025.
DOI URL |
| [25] |
Y. Li, Z. Liu, E. Fan, Y. Huang, Y. Fan, B. Zhao, J. Mater. Sci. Technol. 64 (2021) 141-152.
DOI URL |
| [26] |
J. Wang, T. Zhu, K. Chen, D. Du, P.L. Andresen, L. Zhang, J. Nucl. Mater. 543 (2021), 152603.
DOI URL |
| [27] |
T. Wu, J. Xu, M. Yan, C. Sun, C. Yu, W. Ke, Corros. Sci. 83 (2014) 38-47.
DOI URL |
| [28] |
T. Wu, M. Yan, L. Yu, H. Zhao, C. Sun, F. Yin, W. Ke, Corros. Sci. 157 (2019) 518-530.
DOI URL |
| [29] |
L.Y. Xu, Y.F. Cheng, Corros. Sci. 59 (2012) 103-109.
DOI URL |
| [30] |
G.A. Zhang, Y.F. Cheng, Electrochim. Acta 55 (2009) 316-324.
DOI URL |
| [31] |
Z.Z. Wang, Y.Y. Li, G.A. Zhang, Corros. Sci. 146 (2019) 121-133.
DOI |
| [32] |
Y. Zhang, D.D. Macdonald, M. Urquidi-Macdonald, G.R. Engelhardt, R.B. Dooley, Corros. Sci. 48 (2006) 3812-3823.
DOI URL |
| [33] | J. Wang, S. Qian, Y. Li, D.D. Macdonald, Y. Jiang, J. Li, J. Mater. Sci. Technol. 35 (2019) 637-643. |
| [34] |
J. Lv, J. Mater. Sci. Technol. 34 (2018) 1685-1691.
DOI URL |
| [35] |
Y. Li, Z. Wang, M. Zhao, G. Zhang, Ind. Eng. Chem. Res. 57 (2018) 8718-8728.
DOI URL |
| [36] |
D. Song, A. Ma, W. Sun, J. Jiang, J. Jiang, D. Yang, G. Guo, Corros. Sci. 82 (2014) 437-441.
DOI URL |
| [37] |
J.A. Wharton, R.J.K. Wood, Wear 256 (2004) 525-536.
DOI URL |
| [38] |
M. Javidi, S. Bahalaou Horeh, Corros. Sci. 80 (2014) 213-220.
DOI URL |
| [39] |
Y.Z. Li, X. Wang, G.A. Zhang, Corros. Sci. 163 (2020), 108290.
DOI URL |
| [40] |
H. Tsuchiya, S. Fujimoto, O. Chihara, T. Shibata, Electrochim. Acta 47 (2002) 4357-4366.
DOI URL |
| [41] |
H.-H. Strehblow, Electrochim. Acta 212 (2016) 630-648.
DOI URL |
| [42] |
C.O.A. Olsson, D. Landolt, Electrochim. Acta 48 (2003) 1093-1104.
DOI URL |
| [43] |
L. Li, C.F. Dong, K. Xiao, J.Z. Yao, X.G. Li, Constr. Build. Mater. 68 (2014) 709-715.
DOI URL |
| [44] |
H. Tian, W. Li, B. Hou, D. Wang, Corros. Sci. 117 (2017) 43-58.
DOI URL |
| [45] |
Q.H. Zhang, B.S. Hou, N. Xu, W. Xiong, H.F. Liu, G.A. Zhang, J. Mol. Liq. 285 (2019) 223-236.
DOI |
| [46] |
B.M. Biwer, S.L. Bernasek, J. Electron Spectrosc. Relat. Phenom. 40 (1986) 339-351.
DOI URL |
| [47] |
J. Carver, G. Schweitzer, T. Carlson, J. Chem. Phys. 57 (1972) 973-982.
DOI URL |
| [48] |
E. Kemnitz, A. Kohne, I. Grohmann, A. Lippitz, W.E.S. Unger, J. Catal. 159 (1996) 270-279.
DOI URL |
| [49] |
T.P. Moffat, R.M. Latanision, R.R. Ruf, Electrochim. Acta 40 (1995) 1723-1734.
DOI URL |
| [50] | Y. Zhao, W. Liu, Y. Fan, E. Fan, B. Dong, T. Zhang, X. Li, Corros. Sci. (2020), 108591. |
| [51] |
C. Sleigh, A.P. Pijpers, A. Jaspers, B. Coussens, R.J. Meier, J. Electron Spectrosc, Relat. Phenom. 77 (1996) 41-57.
DOI URL |
| [52] |
D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Electrochim. Acta 276 (2018) 293-303.
DOI URL |
| [53] | J. Huang, X. Wu, E.-H. Han, Corros.Sci. 52 (2010) 3444-3452. |
| [54] |
H. Tian, X. Cheng, Y. Wang, C. Dong, X. Li, Electrochim. Acta 267 (2018) 255-268.
DOI URL |
| [55] |
Y. Dou, S. Han, L. Wang, X. Wang, Z. Cui, Corros. Sci. 165 (2020), 108405.
DOI URL |
| [56] |
P.T. Jakobsen, E. Maahn, Corros. Sci. 43 (2001) 1693-1709.
DOI URL |
| [1] | Xinrui Zhang, Xiaofang Liu, Chunguang Yang, Tong Xi, Jinlong Zhao, Lichu Liu, Ke Yang. New strategy to delay food spoilage: Application of new food contact material with antibacterial function [J]. J. Mater. Sci. Technol., 2021, 70(0): 59-66. |
| [2] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
| [3] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
| [4] | Nana Kwabena Adomako, Giseung Shin, Nokeun Park, Kyoungtae Park, Jeoung Han Kim. Laser dissimilar welding of CoCrFeMnNi-high entropy alloy and duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 85(0): 95-105. |
| [5] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
| [6] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
| [7] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
| [8] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
| [9] | Xinchang Zhang, Tan Pan, Yitao Chen, Lan Li, Yunlu Zhang, Frank Liou. Additive manufacturing of copper-stainless steel hybrid components using laser-aided directed energy deposition [J]. J. Mater. Sci. Technol., 2021, 80(0): 100-116. |
| [10] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
| [11] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
| [12] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
| [13] | Hu Liu, Jie Wei, Junhua Dong, Yangtao Zhou, Yiqing Chen, Yumin Wu, Subedi Dhruba Babu, Aniefiok Joseph Umoh, Wei Ke. The synergy between cementite spheroidization and Cu alloying on the corrosion resistance of ferrite-pearlite steel in acidic chloride solution [J]. J. Mater. Sci. Technol., 2021, 84(0): 65-75. |
| [14] | Bright O. Okonkwo, Hongliang Ming, Jianqiu Wang, En-Hou Han, Ehsan Rahimi, Ali Davoodi, Saman Hosseinpour. A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld [J]. J. Mater. Sci. Technol., 2021, 78(0): 38-50. |
| [15] | Jianxiong Li, Anupam Vivek, Glenn Daehn. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer [J]. J. Mater. Sci. Technol., 2021, 79(0): 191-204. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
