J. Mater. Sci. Technol. ›› 2021, Vol. 88: 90-98.DOI: 10.1016/j.jmst.2021.01.047
Previous Articles Next Articles
Received:2020-07-20
Revised:2021-01-09
Accepted:2021-01-14
Published:2021-03-17
Online:2021-03-17
Contact:
Miaoquan Li
About author:*E-mail address: honeymli@nwpu.edu.cn (M. Li).Runrun Xu, Miaoquan Li. Twinning and twin intersections in γ grains of Ti-42.9Al-4.6Nb-2Cr[J]. J. Mater. Sci. Technol., 2021, 88: 90-98.
| Al | Nb | Cr | Si | Cu | W | Fe | Se | Ti |
|---|---|---|---|---|---|---|---|---|
| 42.89 | 4.59 | 2.01 | 0.59 | 0.25 | 0.07 | 0.1 | 0.004 | Bal. |
Table 1 Chemical composition (at.%) of as-received Ti-42.9Al-4.6Nb-2Cr.
| Al | Nb | Cr | Si | Cu | W | Fe | Se | Ti |
|---|---|---|---|---|---|---|---|---|
| 42.89 | 4.59 | 2.01 | 0.59 | 0.25 | 0.07 | 0.1 | 0.004 | Bal. |
Fig. 2. BF TEM images in γ grains when Ti-42.9Al-4.6Nb-2Cr with duplex structure isothermally compressed at : (a) 1200 ℃, 0.01 s-1, 20 %, (b) 1200 ℃, 0.01 s-1, 30 %, (c)-(f) 1200 ℃, 0.01 s-1, 40 %, (g) 1200 ℃, 0.01 s-1, 50 %, (inserts are magnifications of dotted boxes or SAED patterns of circles). (e) and (f) are similar TEM images by using different diffraction vectors.
Fig. 3. BF TEM images of isothermally compressed Ti-42.9Al-4.6Nb-2Cr with duplex structure: (a) 1200 ℃,1.0 s-1, 50 %, (c) 1200 ℃, 0.001 s-1, 50 %. (b) corresponding SAED pattern of the circle in (a).
Fig. 4. (a) Faults pairs on the right evolved into twins on the left in HRTEM image of Ti-42.9Al-4.6Nb-2Cr with duplex structure at 1200 ℃, 0.01 s-1, 50 %, (b)-(e) FFT images of (a), area R1, R2 and R3, respectively. Black arrows in (a) present the growth directions of faults.
Fig. 5. (a) Faults deflection, (b) faults deflection and rigid-body shuffling, (d) faults undeflected transmission in γ grains at 1200 ℃, 0.01 s-1, 50 %, inserts are the corresponding FFT images. (c) corresponding FFT image of (b).
Fig. 7. (a) Shear bands in γ grains at 1150 ℃, 0.001 s-1, 50 %. (b) is the magnification of the dotted box in (a). The presence of shear bands implies large stress heterogeneity in γ grains.
Fig. 9. Schematic illustration of twin intersections in γ grains. To simply for illustration, the intersection angle in the figures is changed from ~70° to 90°, and the change has no effect on elucidating twin intersections. (a) the initial stage of twin intersections. (b) the evolution of faults colored in yellow, resulting in the motion of intersection points A and B. (c) and (d) the following evolutions of faults colored in blue, causing two motion modes of intersection points C and D. The twin intersections modes are depended to twin growth directions.
| [1] | D. Rugg, M. Dixon, J. Burrows, High Temp. Tech. 33 (2016) 536-541. |
| [2] |
S. Mayer, P. Erdely, F.D. Fischer, Adv. Eng. Mater. 19 (2017), 1600735.
DOI URL |
| [3] |
M. Yamaguchi, H. Inui, K. Ito, Acta Mater. 48 (2000) 307-322.
DOI URL |
| [4] |
V. Seetharaman, S.L. Semiatin, Metall. Mater. Trans. A 33 (2002) 3817-3830.
DOI URL |
| [5] |
L. Song, J.P. Lin, J.S. Li, Mater. Des. 113 (2017) 47-53.
DOI URL |
| [6] |
R. Braun, N. Laska, S.P. Knittel, Mater. Sci. Eng. A 699 (2017) 118-127.
DOI URL |
| [7] |
L. Cheng, J.S. Li, X.Y. Xue, Intermetallics 75 (2016) 62-71.
DOI URL |
| [8] |
V.S. Sokolovsky, N.D. Stepanov, S.V. Zherebtsov, Intermetallics 94 (2018) 138-151.
DOI URL |
| [9] |
Y.D. Chu, J.S. Li, F.T. Zhao, Mater. Sci. Eng. A 725 (2018) 466-478.
DOI URL |
| [10] |
R.M. Imayev, V.M. Imayev, M. Oehring, Intermetallics 15 (2007) 451-460.
DOI URL |
| [11] |
T.I. Nazarova, V.M. Imayev, R.M. Imayev, Intermetallics 82 (2017) 26-31.
DOI URL |
| [12] |
S. Mayer, M. Petersmann, F.D. Fischer, Acta Mater. 115 (2016) 242-249.
DOI URL |
| [13] |
Y.J. Hao, J.X. Liu, S.K. Li, Mater. Sci. Eng. A 705 (2017) 210-218.
DOI URL |
| [14] |
L. Parrini, Metall. Mater. Trans. A 30 (1999) 2865-2873.
DOI URL |
| [15] |
R. Mahapatra, A. Girshick, D.P. Pope, Scr. Metall. Mater. 33 (1995) 1921-1927.
DOI URL |
| [16] |
Q. Wang, H.S. Ding, H.L. Zhang, Mater. Charact. 137 (2018) 133-141.
DOI URL |
| [17] |
D.S. Wen, Y.Y. Zong, Y.Q. Wang, Mater. Sci. Eng. A 656 (2016) 151-164.
DOI URL |
| [18] |
S.G. Pyo, N.J. Kim, J. Mater. Res. 20 (2005) 1888-1901.
DOI URL |
| [19] |
E. Cerreta, S. Mahajan, Acta Mater. 49 (2001) 3803-3809.
DOI URL |
| [20] |
F. Appel, F.D. Fischer, H. Clemens, Acta Mater. 55 (2007) 4915-4923.
DOI URL |
| [21] |
M.H. Yoo, A. Hishinuma, Met. Mater. 3 (1997) 65-74.
DOI URL |
| [22] |
J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157.
DOI URL |
| [23] |
M.H. Yoo, C.L. Fu, Metall. Mater. Trans. A 29 (1998) 49-63.
DOI URL |
| [24] |
F. Appel, H. Clemens, F.D. Fischer, Prog. Mater. Sci. 81 (2016) 55-124.
DOI URL |
| [25] |
M.H. Yoo, Intermetallics 6 (1998) 597-602.
DOI URL |
| [26] | F. Appel, J.D.H. Paul, John Wiley & Sons 2011. |
| [27] |
R.W. Cahn, Acta Metall. 1 (1953) 49-70.
DOI URL |
| [28] |
G.L. Chen, L.C. Zhang, Intermetallics 8 (2000) 539-544.
DOI URL |
| [29] | J.X. Zhang, H.Q. Ye, T, Scr. Mater. 45 (2001) 133-138. |
| [30] |
Y.Q. Sun, P.M. Hazzledine, J.W. Christian, Philos. Mag. A 68 (1993) 471-494.
DOI URL |
| [31] |
A. Denquin, S. Naka, Acta Mater. 44 (1996) 343-352.
DOI URL |
| [32] |
S. Zghal, M. Thomas, S. Naka, Acta Mater. 53 (2005) 2653-2664.
DOI URL |
| [33] |
S.R. Dey, A. Hazotte, E. Bouzy, Intermetallics 17 (2009) 1052-1064.
DOI URL |
| [34] |
G. Wang, L. Xu, Y.X. Tian, Mater. Sci. Eng. A 528 (2011) 6754-6763.
DOI URL |
| [35] |
T. Nakano, Y. Nakai, Y. Umakoshi, Sci. Tech. Adv. Mater. 3 (2002) 225-237.
DOI URL |
| [36] | G.L. Chen, L.C. Zhang, Mater, Sci, Eng, A 329- 331 (2002) 163-170. |
| [37] |
R.R. Xu, H. Li, M.Q. Li, Mater. Des. 186 (2020), 108328.
DOI URL |
| [38] |
T.E.J. Edwards, F.D. Gioacchino, G. Mohanty, Acta Mater. 148 (2018) 202-215.
DOI URL |
| [39] | W.J. Zhang, F. Appel, Mater. Sci. Eng.A 329- 331 (2002) 649-652. |
| [40] |
I.H. Katzarov, A.T. Paxton, Acta Mater. 57 (2009) 3349-3366.
DOI URL |
| [41] | R.E. Smallman A.H.W. Ngan, Butterworth-Heinemann, 2014. |
| [42] |
S.Q. Liu, H.S. Ding, H.L. Zhang, Nanoscale 10 (2018) 11365.
DOI URL |
| [43] |
G. Yang, K. Du, D.S. Xu, Acta Mater. 152 (2018) 269-277.
DOI URL |
| [44] |
Y.S. Li, N.R. Tao, K. Lu, Acta Mater. 56 (2008) 230-241.
DOI URL |
| [45] |
A.J. Palomares-García, M.T. Pérez-Prado, J.M. Molina-Aldareguia, Mater. Des. 146 (2018) 81-95.
DOI URL |
| [46] |
M. Kanani, A. Hartmaier, R. Janisch, Acta Mater. 106 (2016) 208-218.
DOI URL |
| [47] | D. Mercier, C. Zambaldi, T.R. Bieler, 82, 2015, 012090. |
| [1] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
| [2] | Ying Niu, Yue Wang, Long Hou, Lansong Ba, Yanchao Dai, Yves Fautrelle, Zongbin Li, Zhongming Ren, Xi Li. Effect of γ phase on mechanical behavior and detwinning evolution of directionally solidified Ni-Mn-Ga alloys under uniaxial compression [J]. J. Mater. Sci. Technol., 2021, 66(0): 91-96. |
| [3] | Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 221-23. |
| [4] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
| [5] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
| [6] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
| [7] | Hui Fu, Xiaoye Zhou, Bo Wu, Lei Qian, Xu-Sheng Yang. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique [J]. J. Mater. Sci. Technol., 2021, 82(0): 227-238. |
| [8] | Zhufeng He, Nan Jia, Hongwei Wang, Haile Yan, Yongfeng Shen. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86(0): 158-170. |
| [9] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
| [10] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
| [11] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
| [12] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
| [13] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
| [14] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
| [15] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat

