J. Mater. Sci. Technol. ›› 2021, Vol. 88: 258-269.DOI: 10.1016/j.jmst.2021.01.068
Yumeng Nia,b, Fan Zhangc, Demian I. Njokua, Yingjie Yua,b, Jinshan Pand, Meijiang Menga, Ying Lia,e,*()
Received:
2020-10-29
Revised:
2021-01-07
Accepted:
2021-01-24
Published:
2021-03-19
Online:
2021-03-19
Contact:
Ying Li
About author:
* Corrosion and Protection Division, Shenyang NationalLaboratory for Materials Science, Institute of Metal Research, Chinese Academy ofSciences, Shenyang, 110016, China.E-mail address: liying@imr.ac.cn (Y. Li).Yumeng Ni, Fan Zhang, Demian I. Njoku, Yingjie Yu, Jinshan Pan, Meijiang Meng, Ying Li. Corrosion mechanism of CuAl-NiC abradable seal coating system—The influence of porosity, multiphase, and multilayer structure on the corrosion failure[J]. J. Mater. Sci. Technol., 2021, 88: 258-269.
Spray parameters | Value and unit |
---|---|
Spray distance | 140 mm |
Plasma gas (Ar) flow rate | 90 L/min |
H2 flow rate | 10 L/min |
Arc current | 550 A |
Voltage | 60 V |
Powder feed rate | 40 g/min |
Carrier gas (N2) flow rate | 4 L/min |
Table 1 Plasma spray process parameters for the NiAl bond layer.
Spray parameters | Value and unit |
---|---|
Spray distance | 140 mm |
Plasma gas (Ar) flow rate | 90 L/min |
H2 flow rate | 10 L/min |
Arc current | 550 A |
Voltage | 60 V |
Powder feed rate | 40 g/min |
Carrier gas (N2) flow rate | 4 L/min |
Spray parameters | Value and unit |
---|---|
Spray distance | 160 mm |
O2 flow rate | 1.3 m3/h |
C2H2 flow rate | 1.0 m3/h |
Powder feed rate | 60 g/min |
Table 2 Flame spray process parameters for the CuAl-NiC top layer.
Spray parameters | Value and unit |
---|---|
Spray distance | 160 mm |
O2 flow rate | 1.3 m3/h |
C2H2 flow rate | 1.0 m3/h |
Powder feed rate | 60 g/min |
Fig. 4. Cross-sectional morphologies of the corrosion products formed inside the CuAl-NiC ASC system with different immersion time in 5 wt.% NaCl solution: (a) 8 h; (b) 72 h; (c) 480 h; (d) 1440 h.
Immersion time (h) | Porosity (%) | The most probable pore diameter (nm) |
---|---|---|
0 | 12.03 | 553.1 |
8 | 8.38 | 433.6 |
72 | 12.04 | 6234.9 |
480 | 22.68 | 9051.8 |
1440 | 31.27 | 11311.9 |
Table 3 The porosity and the most probable pore diameter of the CuAl-NiC top layer.
Immersion time (h) | Porosity (%) | The most probable pore diameter (nm) |
---|---|---|
0 | 12.03 | 553.1 |
8 | 8.38 | 433.6 |
72 | 12.04 | 6234.9 |
480 | 22.68 | 9051.8 |
1440 | 31.27 | 11311.9 |
Fig. 10. OCP results for the separated CuAl-NiC top layer, the NiAl/substrate, the substrate, and the complete CuAl-NiC ASC system in 5 wt.% NaCl solution.
Ecorr (V/SCE) | icorr (×10-8 A cm-2) | |
---|---|---|
The separated CuAl-NiC top layer | -0.45 | 142.2 |
The separated NiAl bond layer | -0.83 | 890.5 |
The substrate | -0.31 | 2.9 |
Table 4 Ecorr and icorr of the separated CuAl-NiC top layer, the separated NiAl bond layer, and the substrate obtained from the polarization curves in Fig. 11.
Ecorr (V/SCE) | icorr (×10-8 A cm-2) | |
---|---|---|
The separated CuAl-NiC top layer | -0.45 | 142.2 |
The separated NiAl bond layer | -0.83 | 890.5 |
The substrate | -0.31 | 2.9 |
Fig. 12. EIS data for the complete CuAl-NiC ASC system in 5 wt.% NaCl solution during the immersion: (a) the first stage; (b) the second stage; (c) the third stage; (d) the fourth stage.
Fig. 13. Equivalent circuits used for fitting the EIS data in Fig. 12(a)-(d): (a) equivalent circuit for the first and second stage; (b) equivalent circuit for the third and fourth stage. Rs: solution resistance; Rcp: corrosion product resistance; Rct: charge transfer resistance; R1: coating resistance; Zw: Warburg resistance; CPE: constant phase element used instead of capacitance.
Rs (Ω cm2) | Rcp (Ω cm2) | Rct (Ω cm2) | Zw (Ω s-0.5 cm-2) | CPE1 (sα Ω-1 cm-2) | α1 | CPE2 (sα Ω-1 cm-2) | α2 | Σχ2 × 104 | |
---|---|---|---|---|---|---|---|---|---|
2 h | 5.7 | 220 | 430 | 4.4 × 10-3 | 2.0 × 10-4 | 0.73 | 2.7 × 10-4 | 0.73 | 4.6 |
5 h | 5.9 | 490 | 970 | 4.8 × 10-3 | 1.2 × 10-4 | 0.79 | 1.9 × 10-4 | 0.69 | 3.0 |
8 h | 6.1 | 530 | 1700 | 4.9 × 10-3 | 1.2 × 10-4 | 0.80 | 2.0 × 10-4 | 0.61 | 1.7 |
12 h | 6.1 | 560 | 2300 | 5.1 × 10-3 | 1.2 × 10-4 | 0.80 | 2.1 × 10-4 | 0.53 | 4.2 |
Table 5 Fitting parameters of equivalent circuit elements corresponding to the first stage of immersion (Fig. 12(a)).
Rs (Ω cm2) | Rcp (Ω cm2) | Rct (Ω cm2) | Zw (Ω s-0.5 cm-2) | CPE1 (sα Ω-1 cm-2) | α1 | CPE2 (sα Ω-1 cm-2) | α2 | Σχ2 × 104 | |
---|---|---|---|---|---|---|---|---|---|
2 h | 5.7 | 220 | 430 | 4.4 × 10-3 | 2.0 × 10-4 | 0.73 | 2.7 × 10-4 | 0.73 | 4.6 |
5 h | 5.9 | 490 | 970 | 4.8 × 10-3 | 1.2 × 10-4 | 0.79 | 1.9 × 10-4 | 0.69 | 3.0 |
8 h | 6.1 | 530 | 1700 | 4.9 × 10-3 | 1.2 × 10-4 | 0.80 | 2.0 × 10-4 | 0.61 | 1.7 |
12 h | 6.1 | 560 | 2300 | 5.1 × 10-3 | 1.2 × 10-4 | 0.80 | 2.1 × 10-4 | 0.53 | 4.2 |
Rs (Ω cm2) | Rcp (Ω cm2) | Rct (Ω cm2) | Zw (Ω s-0.5 cm-2) | CPE1 (sα Ω-1 cm-2) | α1 | CPE2 (sα Ω-1 cm-2) | α2 | Σχ2 × 104 | |
---|---|---|---|---|---|---|---|---|---|
24 h | 6.3 | 540 | 2300 | 2.2 × 10-3 | 1.2 × 10-4 | 0.80 | 3.5 × 10-4 | 0.54 | 2.3 |
32 h | 6.3 | 450 | 2100 | 1.9 × 10-3 | 1.3 × 10-4 | 0.80 | 4.2 × 10-4 | 0.55 | 2.5 |
48 h | 6.3 | 440 | 1900 | 1.8 × 10-3 | 1.3 × 10-4 | 0.80 | 4.3 × 10-4 | 0.57 | 2.3 |
72 h | 7.7 | 260 | 2100 | 1.8 × 10-3 | 1.4 × 10-4 | 0.79 | 5.4 × 10-4 | 0.54 | 3.3 |
120 h | 7.6 | 280 | 2500 | 1.2 × 10-3 | 1.5 × 10-4 | 0.79 | 6.0 × 10-4 | 0.47 | 5.4 |
Table 6 Fitting parameters of equivalent circuit elements corresponding to the second stage of immersion (Fig. 12(b)).
Rs (Ω cm2) | Rcp (Ω cm2) | Rct (Ω cm2) | Zw (Ω s-0.5 cm-2) | CPE1 (sα Ω-1 cm-2) | α1 | CPE2 (sα Ω-1 cm-2) | α2 | Σχ2 × 104 | |
---|---|---|---|---|---|---|---|---|---|
24 h | 6.3 | 540 | 2300 | 2.2 × 10-3 | 1.2 × 10-4 | 0.80 | 3.5 × 10-4 | 0.54 | 2.3 |
32 h | 6.3 | 450 | 2100 | 1.9 × 10-3 | 1.3 × 10-4 | 0.80 | 4.2 × 10-4 | 0.55 | 2.5 |
48 h | 6.3 | 440 | 1900 | 1.8 × 10-3 | 1.3 × 10-4 | 0.80 | 4.3 × 10-4 | 0.57 | 2.3 |
72 h | 7.7 | 260 | 2100 | 1.8 × 10-3 | 1.4 × 10-4 | 0.79 | 5.4 × 10-4 | 0.54 | 3.3 |
120 h | 7.6 | 280 | 2500 | 1.2 × 10-3 | 1.5 × 10-4 | 0.79 | 6.0 × 10-4 | 0.47 | 5.4 |
Rs (Ω cm2) | R1 (Ω cm2) | Rct (Ω cm2) | CPE1 (sα Ω-1 cm-2) | α1 | CPE2 (sα Ω-1 cm-2) | α2 | Σχ2 × 104 | |
---|---|---|---|---|---|---|---|---|
240 h | 6.2 | 170 | 9900 | 4.3 × 10-4 | 0.67 | 6.2 × 10-4 | 0.53 | 4.7 |
312 h | 7.2 | 270 | 7100 | 7.9 × 10-4 | 0.80 | 1.0 × 10-3 | 0.58 | 1.7 |
360 h | 6.5 | 330 | 5600 | 8.3 × 10-4 | 0.80 | 9.6 × 10-4 | 0.55 | 1.3 |
480 h | 6.5 | 310 | 3700 | 9.2 × 10-4 | 0.79 | 1.0 × 10-3 | 0.60 | 1.2 |
Table 7 Fitting parameters of equivalent circuit elements corresponding to the third stage of immersion (Fig. 12(c)).
Rs (Ω cm2) | R1 (Ω cm2) | Rct (Ω cm2) | CPE1 (sα Ω-1 cm-2) | α1 | CPE2 (sα Ω-1 cm-2) | α2 | Σχ2 × 104 | |
---|---|---|---|---|---|---|---|---|
240 h | 6.2 | 170 | 9900 | 4.3 × 10-4 | 0.67 | 6.2 × 10-4 | 0.53 | 4.7 |
312 h | 7.2 | 270 | 7100 | 7.9 × 10-4 | 0.80 | 1.0 × 10-3 | 0.58 | 1.7 |
360 h | 6.5 | 330 | 5600 | 8.3 × 10-4 | 0.80 | 9.6 × 10-4 | 0.55 | 1.3 |
480 h | 6.5 | 310 | 3700 | 9.2 × 10-4 | 0.79 | 1.0 × 10-3 | 0.60 | 1.2 |
Rs (Ω cm2) | R1 (Ω cm2) | Rct (Ω cm2) | CPE1 (sα Ω-1 cm-2) | α1 | CPE2 (sα Ω-1 cm-2) | α2 | Σχ2 × 104 | |
---|---|---|---|---|---|---|---|---|
600 h | 6.7 | 320 | 5000 | 9.7 × 10-4 | 0.77 | 1.5 × 10-3 | 0.63 | 1.9 |
720 h | 6.1 | 340 | 4100 | 9.5 × 10-4 | 0.78 | 2.4 × 10-3 | 0.74 | 2.8 |
840 h | 6.9 | 550 | 2900 | 9.8 × 10-4 | 0.79 | 2.4 × 10-3 | 0.60 | 3.2 |
960 h | 6.9 | 550 | 3000 | 9.9 × 10-4 | 0.79 | 2.4 × 10-3 | 0.59 | 1.6 |
1200 h | 6.9 | 540 | 3000 | 1.0 × 10-3 | 0.78 | 2.5 × 10-3 | 0.59 | 1.5 |
1440 h | 7.1 | 520 | 2900 | 1.0 × 10-3 | 0.78 | 2.4 × 10-3 | 0.60 | 1.5 |
Table 8 Fitting parameters of equivalent circuit elements corresponding to the fourth stage of immersion (Fig. 12(d)).
Rs (Ω cm2) | R1 (Ω cm2) | Rct (Ω cm2) | CPE1 (sα Ω-1 cm-2) | α1 | CPE2 (sα Ω-1 cm-2) | α2 | Σχ2 × 104 | |
---|---|---|---|---|---|---|---|---|
600 h | 6.7 | 320 | 5000 | 9.7 × 10-4 | 0.77 | 1.5 × 10-3 | 0.63 | 1.9 |
720 h | 6.1 | 340 | 4100 | 9.5 × 10-4 | 0.78 | 2.4 × 10-3 | 0.74 | 2.8 |
840 h | 6.9 | 550 | 2900 | 9.8 × 10-4 | 0.79 | 2.4 × 10-3 | 0.60 | 3.2 |
960 h | 6.9 | 550 | 3000 | 9.9 × 10-4 | 0.79 | 2.4 × 10-3 | 0.59 | 1.6 |
1200 h | 6.9 | 540 | 3000 | 1.0 × 10-3 | 0.78 | 2.5 × 10-3 | 0.59 | 1.5 |
1440 h | 7.1 | 520 | 2900 | 1.0 × 10-3 | 0.78 | 2.4 × 10-3 | 0.60 | 1.5 |
[1] | F. Ghasripoor, R. Schmid, M. Dorfman, Mater. World 5 (1997) 328-330. |
[2] |
T. Rhys-Jones, Corros. Sci. 29 (1989) 623-646.
DOI URL |
[3] |
M. Öksüz, H. Yıldırım, J. Appl. Polym. Sci. 93 (2004) 2437-2444.
DOI URL |
[4] |
H. Faraoun, T. Grosdidier, J.L. Seichepine, D. Goran, H. Aourag, C. Coddet, J. Zwick, N. Hopkins, Surf. Coat. Technol. 201 (2006) 2303-2312.
DOI URL |
[5] |
R. Johnston, Surf. Coat. Technol. 205 (2011) 3268-3273.
DOI URL |
[6] |
H.I. Faraoun, J.L. Seichepine, C. Coddet, H. Aourag, J. Zwick, N. Hopkins, D. Sporer, M. Hertter, Surf. Coat. Technol. 200 (2006) 6578-6582.
DOI URL |
[7] |
J. Matĕjíček, B. Kolman, J. Dubský, K. Neufuss, N. Hopkins, J. Zwick, Mater. Charact. 57 (2006) 17-29.
DOI URL |
[8] | M. Borel, A. Nicoll, H. Schla, R. Schmid, Surf. Coat. Technol. 39 (1989) 117-126. |
[9] |
R. Johnston, W. Evans, Surf. Coat. Technol. 202 (2007) 725-729.
DOI URL |
[10] | D. Sporer, A. Refke, M. Dratwinski, M. Dorfman, S. Metco, I. Giovannetti, M. Giannozzi, M. Bigi, Sealing Technol. 2008 (2008) 9-11. |
[11] |
L.B. Vogelesang, A. Vlot, J. Mater. Process. Technol. 103 (2000) 1-5.
DOI URL |
[12] |
N.D. Alexopoulos, C.J. Dalakouras, P. Skarvelis, S.K. Kourkoulis, Corros. Sci. 55 (2011) 289-300.
DOI URL |
[13] |
A. Batailly, M. Legrand, A. Millecamps, F. Garcin, J. Sound Vib. 348 (2015) 239-262.
DOI URL |
[14] | L. Chen, H. Lan, C. Huang, B. Yang, S. Fang, W. Zhang, Aviat. Manuf. Technol. 79 (2017) 30-36. |
[15] | X. Bi, H. Guo, S. Gong, H. Xu, J. Chin. Soc. Corros. Prot. 22 (2002) 84-87. |
[16] |
R.A. Mahesh, R. Jayaganthan, S. Prakash, Mater. Sci. Eng. A 475 (2008) 327-335.
DOI URL |
[17] |
L. Chen, H. Lan, C. Huang, B. Yang, L. Du, W. Zhang, Eng. Failure Anal. 79 (2017) 245-252.
DOI URL |
[18] |
M.A. Clegg, M.H. Mehta, Surf. Coat. Technol. 34 (1988) 69-77.
DOI URL |
[19] |
J. Jońca, B. Malard, J. Soulié, T. Sanviemvongsak, S. Selezneff, A.V. Put, Corros. Sci. 153 (2019) 170-177.
DOI URL |
[20] |
C.U. Hardwicke, Y.C. Lau, J. Therm. Spray Technol. 22 (2013) 564-576.
DOI URL |
[21] |
F. Zhang, H. Lan, C. Huang, Y. Zhou, L. Du, W. Zhang, Acta Metall. Sin. 27 (2014) 1114-1121.
DOI URL |
[22] |
F. Zhang, C. Xu, H. Lan, C. Huang, Y. Zhou, L. Du, W. Zhang, J. Therm. Spray Technol. 23 (2014) 1019-1028.
DOI URL |
[23] |
C. Xu, L. Du, B. Yang, W. Zhang, Corros. Sci. 53 (2011) 2066-2074.
DOI URL |
[24] |
M. Campo, M. Carboneras, M. López, B. Torres, P. Rodrigo, E. Otero, J. Rams, Surf. Coat. Technol. 203 (2009) 3224-3230.
DOI URL |
[25] |
A. Pardo, M. Merino, M. Mohedano, P. Casajús, A. Coy, R. Arrabal, Surf. Coat. Technol. 203 (2009) 1252-1263.
DOI URL |
[26] |
C. Monticelli, A. Frignani, F. Zucchi, Corros. Sci. 46 (2004) 1225-1237.
DOI URL |
[27] | J. Liu, Y. Yu, C. Xu, T. Liu, D. Zhang, Therm. Spray Technol. 9 (2017) 7-11. |
[28] | X. He, J. Liu, D. Zhang, Y. Yu, Therm. Spray Technol. 8 (2016) 1-6. |
[29] | Y. Tang, A. Song, Microelectronics 39 (2009) 289-292. |
[30] |
C. Xu, L. Du, B. Yang, W. Zhang, Surf. Coat. Technol. 205 (2011) 4154-4161.
DOI URL |
[31] | B. Lei, S. Hu, Z. Wang, Y. Li, F. Wang, Corros. Sci. Prot. Technol. 29 (2017) 651-656. |
[32] | C. Yang, Synth. Mater. Aging Appl. 39 (2010) 43-48. |
[33] |
C. Xu, L. Du, B. Yang, W. Zhang, Surf. Coat. Technol. 205 (2011) 4154-4161.
DOI URL |
[34] | R. Mitra, Elsevier, 2017. |
[35] |
B. Lei, M. Li, Z. Zhao, L. Wang, Y. Li, F. Wang, Corros. Sci. 79 (2014) 198-205.
DOI URL |
[36] | R. McPherson, Surf. Coat. Technol. 39 (1989) 173-181. |
[37] |
C. Vogiatzis, D. Kountouras, S. Skolianos, Corros. Eng. Sci. Technol. 51 (2016) 51-59.
DOI URL |
[38] |
D. Wong, L. Swette, F.H. Cocks, J. Electrochem. Soc. 126 (1979) 11-15.
DOI URL |
[39] |
J.B. Jorcin, C. Blanc, N. Pebere, B. Tribollet, V. Vivier, J. Electrochem. Soc. 155 (2008) C46-C51.
DOI URL |
[40] |
M.G.A. Khedr, A.M.S. Lashien, Corros. Sci. 33 (1992) 137-151.
DOI URL |
[41] |
S. Joma, M. Sancy, E.M.M. Sutter, T.T.M. Tran, B. Tribollet, Surf. Interface Anal. 45 (2013) 1590-1596.
DOI URL |
[42] |
Y. Zeng, K. Bai, H. Jin, Microelectron. Reliab. 53 (2013) 985-1001.
DOI URL |
[43] |
W.A. Badawy, M.M. El-Rabiee, N.H. Helal, H. Nady, Electrochim. Acta 56 (2010) 913-918.
DOI URL |
[44] |
B. Beverskog, I. Puigdomenech, Corros. Sci. 39 (1997) 969-980.
DOI URL |
[45] |
J. Zuo, Z. Jin, R. Sun, Y. Xu, X. Feng, Corrosion 44 (1988) 539-543.
DOI URL |
[46] |
S.M. Dedemicheli, Corros. Sci. 18 (1978) 605-616.
DOI URL |
[47] | C.N. Cao, Principle of Electrochemistry of Corrosion, Chemical Industry Press, Beijing, 2008. |
[48] |
K.P. Wong, R.C. Alkire, J. Electrochem. Soc. 137 (1990) 3010-3015.
DOI URL |
[49] |
F. Hunkeler, H. Bohni, Corrosion 37 (1981) 645-650.
DOI URL |
[50] |
R. Galvele, J. Jose, Electrochem. Soc. 123 (1976) 464-474.
DOI URL |
[51] |
B. Beverskog, I. Puigdomenech, Corros. Sci. 39 (1997) 43-57.
DOI URL |
[52] |
Z.Y. Ding, L.Y. Cui, R.C. Zeng, Y.B. Zhao, S.K. Guan, D.K. Xu, C.G. Lin, J. Mater. Sci. Technol. 34 (2018) 1550-1557.
DOI URL |
[53] |
A. Arya, P.R.W. Vassie, Cem. Concr. Res. 25 (1995) 989-998.
DOI URL |
[54] |
F. Stergioudi, C. Vogiatzis, K. Gkrekos, N. Michailidis, S. Skolianos, Corros. Sci. 91 (2015) 151-159.
DOI URL |
[1] | Bailiang Wang, Jiahong Zeng, Yishun Guo, Lin Liang, Yingying Jin, Siyuan Qian, Renjie Miao, Liang Hu, Fan Lu. Reversible grafting of antibiotics onto contact lens mediated by labile chemical bonds for smart prevention and treatment of corneal bacterial infections [J]. J. Mater. Sci. Technol., 2021, 61(0): 169-175. |
[2] | Bright O. Okonkwo, Hongliang Ming, Jianqiu Wang, En-Hou Han, Ehsan Rahimi, Ali Davoodi, Saman Hosseinpour. A new method to determine the synergistic effects of area ratio and microstructure on the galvanic corrosion of LAS A508/309 L/308 L SS dissimilar metals weld [J]. J. Mater. Sci. Technol., 2021, 78(0): 38-50. |
[3] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
[4] | Hu Liu, Jie Wei, Junhua Dong, Yiqing Chen, Yumin Wu, Yangtao Zhou, Subedi Dhruba Babu, Wei Ke. Influence of cementite spheroidization on relieving the micro-galvanic effect of ferrite-pearlite steel in acidic chloride environment [J]. J. Mater. Sci. Technol., 2021, 61(0): 234-246. |
[5] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[6] | Mingyue Sun, Bin Xu, Bijun Xie, Dianzhong Li, Yiyi Li. Leading manufacture of the large-scale weldless stainless steel forging ring: Innovative approach by the multilayer hot-compression bonding technology [J]. J. Mater. Sci. Technol., 2021, 71(0): 84-86. |
[7] | Mengdan Hu, Taotao Wang, Hui Fang, Mingfang Zhu. Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 76-85. |
[8] | Jintao Shuai, Xiao Zuo, Zhenyu Wang, Lili Sun, Rende Chen, Li Wang, Aiying Wang, Peiling Ke. Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads [J]. J. Mater. Sci. Technol., 2021, 80(0): 179-190. |
[9] | Dawei Guo, Chi Tat Kwok. A corrosion study on W-Cu alloys in sodium chloride solution at different pH [J]. J. Mater. Sci. Technol., 2021, 64(0): 38-56. |
[10] | Yun-Qi Tong, Qiu-Sheng Shi, Mei-Jun Liu, Guang-Rong Li, Chang-Jiu Li, Guan-Jun Yang. Lightweight epoxy-based abradable seal coating with high bonding strength [J]. J. Mater. Sci. Technol., 2021, 69(0): 129-137. |
[11] | Wenlong Liu, Lin Tao, Wei Feng, Jiaxuan Liao, Lingzhao Zhang. Sandwich-type composite multilayer films of strontium titanate and barium strontium titanate and their controllable dielectric properties [J]. J. Mater. Sci. Technol., 2021, 85(0): 245-254. |
[12] | Jing Wang, Lu Han, Xiaohu Li, Dongguang Liu, Laima Luo, Yuan Huang, Yongchang Liu, Zumin Wang. Supermodulus effect by grain-boundary wetting in nanostructured multilayers [J]. J. Mater. Sci. Technol., 2021, 65(0): 202-209. |
[13] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[14] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[15] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Reducing porosity and optimizing performance for Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification [J]. J. Mater. Sci. Technol., 2021, 79(0): 1-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||