J. Mater. Sci. Technol. ›› 2021, Vol. 86: 251-259.DOI: 10.1016/j.jmst.2021.01.046
• Research Article • Previous Articles Next Articles
Lili Xiaoa, Ping Huanga,*(
), Fei Wangb
Received:2020-12-08
Accepted:2021-01-12
Published:2021-09-30
Online:2021-09-24
Contact:
Ping Huang
About author:*E-mail address: huangping@mail.xjtu.edu.cn (P. Huang).Lili Xiao, Ping Huang, Fei Wang. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy[J]. J. Mater. Sci. Technol., 2021, 86: 251-259.
Fig. 3. EBSD and cross-sectional TEM images of CoCrFeMnNi alloys with different grain sizes show the microstructural evolution of (a) ~30 μm (cg), (b) ~15 μm (fg), (c) ~1 μm (ufg) and (d-f) ~7 nm (nc) samples.
Fig. 5. (a) Hardness plotted as a function of loading strain rate for the HEA alloys with different grain sizes and (b) hardness with different grain sizes of FCC HEAs from the present results and literature [13,26,73].
Fig. 6. Comparing the trend lines of (a) strain rate sensitivity m and (b) activation volume v* changed with grain size between the present FCC HEA alloys and conventional FCC Cu gathered by Chen et al. [10].
Fig. 7. (a) Strain rate sensitivity m and (b) activation volume values v* with different grain sizes of FCC HEAs from the present results and literature [13,26,41,47,73,74]. The dotted black line represents the trend derived from the present HEA samples, while the dotted red line describes the trend considering all the data involving both the HEA herein and those reported in the literature. Then, the gap magnified in the inset of (a) demonstrate that whatever the dominant mechanism is, that should not be GB-self deformation mechanisms, as sufficiently relaxed GB in the present nc HEA sample should possess lower GB dislocation density and effectively released local residual stress that is favorable for GB sliding, GB rotation corresponding to higher SRS index m.
Fig. 8. Schematic illustrations showing distinct grain size dependent strain rate sensitivities that correlated with various deformation-carries for both conventional FCC metals and FCC HEAs. For conventional FCC metals, a mechanism transition occurs from dislocation-mediated to GB-mediated processes as grain size reduces, resulting in increased SRS index at reduced d. For HEA FCC metals, the wary morphology of dislocations leads to lower dislocation velocity and therefore more dislocations (corresponding to higher dislocation density) for a given strain rate, results in higher hardness and smaller SRS index in coarse grained regime, and the identical dislocation processes extended to even nanoscale grained regime, where the probability of a dislocation absorbed by GB, Pdis, play a crucial role that leads to unusual small SRS index. As grain size reduced, the wary dislocation might be smoothed because of the increased intrinsic stress, especially in nanoscale grained HEA metals. If it is true, the smoothing process may also affect the SRS index and need to be further explored.
| [1] |
Z.C. Cordero, B.E. Knight, C.A. Schuh, Int. Mater. Rev. 61(2016) 495-512.
DOI URL |
| [2] |
M. Chandross, N. Argibay, Phys. Rev. Lett. 124(2020), 125501.
DOI PMID |
| [3] |
J. Bach, M. Stoiber, L. Schindler, H.W. Hoppel, M. Goken, Acta Mater. 186(2020) 363-373.
DOI URL |
| [4] |
A. Leitner, V. Maier-Kiener, J. Jeong, M.D. Abad, P. Hosernann, S.H. Oh, D. Kiener, Acta Mater. 121(2016) 104-116.
DOI URL |
| [5] |
Y. Lin, J. Pan, H.F. Zhou, H.J. Gao, Y. Li, Acta Mater. 153(2018) 279-289.
DOI URL |
| [6] |
N.V. Malyar, B. Grabowski, G. Dehm, C. Kirchlechner, Acta Mater. 161(2018) 412-419.
DOI URL |
| [7] |
O. Renk, V. Maier-Kiener, I. Issa, J.H. Li, D. Kiener, R. Pippan, Acta Mater. 165(2019) 409-419.
DOI |
| [8] |
Q. Wei, S. Cheng, K.T. Ramesh, E. Ma, Mater. Sci. Eng. A 381 (2004) 71-79.
DOI URL |
| [9] |
Y.I. Golovin, A.I. Tyurin, V.V. Khlebnikov, Tech. Phys. 50(2005) 479-483.
DOI URL |
| [10] |
J. Chen, L. Lu, K. Lu, Scr. Mater. 54(2006) 1913-1918.
DOI URL |
| [11] | F. Wang, P. Huang, K.W. Xu, Appl. Phys. Lett. 90(2007) 2715. |
| [12] |
G. Laplanche, J. Bonneville, C. Varvenne, W.A. Curtin, E.P. George, Acta Mater. 143(2018) 257-264.
DOI URL |
| [13] | Y.K. Zhao, X.T. Wang, T.Q. Cao, J.K. Han, M. Kawasaki, J.I. Jang, H.N. Han, U. Ramamurty, L. Wang, Y.F. Xue, Mat. Sci. Eng. A 782(2020). |
| [14] |
Y. Xiao, R. Kozak, M.J.R. Hache, W. Steurer, R. Spolenak, J.M. Wheeler, Y. Zou, Mat. Sci. Eng. A 790 (2020), 139429.
DOI URL |
| [15] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188(2020) 435-474.
DOI URL |
| [16] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4(2019) 515-534.
DOI |
| [17] |
Z.Z. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102(2019) 296-345.
DOI URL |
| [18] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227-230.
DOI URL |
| [19] |
Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7(2017) 40704.
DOI URL |
| [20] |
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61(2013) 4887-4897.
DOI URL |
| [21] |
N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, E.P. George, AIP Adv. 6(2016), 125008.
DOI URL |
| [22] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
| [23] |
D.H. Lee, J.M. Park, G.H. Yang, J.Y. He, Z.P. Lu, J.Y. Suh, M. Kawasaki, U. Ramamurty, J. Jang, Scr. Mater. 163(2019) 24-28.
DOI URL |
| [24] |
X.L. Ren, B.D. Yao, T. Zhu, Z.H. Zhong, Y.X. Wang, X.Z. Cao, S. Jinno, Q. Xu, Intermetallics 126 (2020) 106942.
DOI URL |
| [25] |
B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu, J.W. Qiao. J. Alloys. Compd. 827(2020), 153981.
DOI URL |
| [26] |
V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, A. Hohenwarter, J. Mater. Res. 32(2017) 2658-2667.
DOI URL |
| [27] |
F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61(2013) 5743-5755.
DOI URL |
| [28] |
P. Asghari-Rad, P. Sathiyamoorthi, J.W. Bae, J. Moon, J.M. Park, A. Zargaran, H.S. Kim, Mater. Sci. Eng. A 744 (2019) 610-617.
DOI URL |
| [29] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122(2017) 448-511.
DOI URL |
| [30] | X. Chang, M. Zeng, K. Liu, L. Fu, Adv. Mater. 32(2020), e1907226. |
| [31] |
C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi, W.A. Curtin, Acta Mater. 124(2017) 660-683.
DOI URL |
| [32] |
W.G. Nohring, W.A. Curtin, Scr. Mater. 187(2020) 210-215.
DOI URL |
| [33] |
L.R. Owen, N.G. Jones, Scr. Mater. 187(2020) 428-433.
DOI URL |
| [34] |
M.G. Wang, A.H.W. Ngan, J. Mater. Res. 19(2004) 2478-2486.
DOI URL |
| [35] |
S.M. Han, R. Saha, W.D. Nix, Acta Mater. 54(2006) 1571-1581.
DOI URL |
| [36] | B.N. Lucas, W.C. Oliver, Metall. Mater. Trans. A-Phys.Metall. Mater. Sci. 30(1999) 601-610. |
| [37] |
C. Zhu, Z.P. Lu, T.G. Nieh, Acta Mater. 61(2013) 2993-3001.
DOI URL |
| [38] |
Y.J. Chen, Z.F. Zhou, P.S. Munroe, Z. Xie, Appl. Phys. Lett. 113(2018), 081905.
DOI URL |
| [39] |
P. Gu, M. Dao, R.J. Asaro, S. Suresh, Acta Mater. 59(2011) 6861-6868.
DOI URL |
| [40] |
R.J. Asaro, S. Suresh, Acta Mater. 53(2005) 3369-3382.
DOI URL |
| [41] |
Z.G. Wu, Y.F. Gao, H.B. Bei, Acta Mater. 120(2016) 108-119.
DOI URL |
| [42] |
J. Schiotz, F.D. Di Tolla, K.W. Jacobsen, Nature 391 (1998) 561-563.
DOI URL |
| [43] |
M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma, Acta Mater. 55(2007) 4041-4065.
DOI URL |
| [44] |
I.A. Ovid’ko, R.Z. Valiev, Y.T. Zhu, Prog. Mater. Sci. 94(2018) 462-540.
DOI URL |
| [45] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81(2014) 428-441.
DOI URL |
| [46] |
M. Komarasamy, N. Kumar, R.S. Mishra, P.K. Liaw, Mat. Sci. Eng. A 654 (2016) 256-263.
DOI URL |
| [47] |
S.I. Hong, J. Moon, S.K. Hong, H.S. Kim, Mater. Sci. Eng. A 682 (2017) 569-576.
DOI URL |
| [48] |
A.S. Krausz, Mater. Sci. Eng. A 26 (1976) 65-71.
DOI URL |
| [49] |
H. Conrad, JOM 16 (1964) 582-588.
DOI URL |
| [50] |
A.G. Atkins, J. Mech. Working Technol. 9(1984) 224-225.
DOI URL |
| [51] |
Y.M. Wang, A.V. Hamza, E. Ma, Acta Mater. 54(2006) 2715-2726.
DOI URL |
| [52] |
H. Conrad, Mater. Sci. Eng. A 341 (2003) 216-228.
DOI URL |
| [53] |
P. Huang, F. Wang, M. Xu, K.W. Xu, T.J. Lu, Acta Mater. 58(2010)5196-5205.
DOI URL |
| [54] | D. Cailliard, J.L. Martin, Pergamon, 2003, pp. 323-358. |
| [55] |
E. Ma, Scr. Mater. 181(2020) 127-133.
DOI URL |
| [56] |
Q.J. Li, H. Sheng, E. Ma, Nat. Commun. 10(2019) 3563-3573.
DOI URL |
| [57] | R. Labusch, Phys. Status Solidi 41 (1970) 659-669. |
| [58] |
J.W. Cahn, F.R.N. Nabarro, Philos. Mag. 81(2001) 1409-1426.
DOI URL |
| [59] |
F.R.N. Nabarro, Philos. Mag. 83(2003) 3047-3054.
DOI URL |
| [60] |
M.J. Kobrinsky, C.V. Thompson, Acta Mater. 48(2000) 625-633.
DOI URL |
| [61] |
J.W. Yeh, JOM 67 (2015) 2254-2261.
DOI URL |
| [62] |
S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Mater. Des. 133(2017) 122-127.
DOI URL |
| [63] |
U.F. Kocks, A.S. Argon, M.F. Ashby, Prog. Mater. Sci. 19(1975) 1-281.
DOI URL |
| [64] |
T. Tabata, K. Takagi, H. Fujita, Trans. Jpn. Inst. Met. 16(1975) 569-579.
DOI URL |
| [65] |
Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, B. Schmitt, Science 304 (2004) 273-276.
PMID |
| [66] | J. Friedel, Dislocations, Pergamon Press, Oxford, 1964, pp. 223-226. |
| [67] |
F.R.N. Nabarro, J. Less Common Met. 28(1972) 257-276.
DOI URL |
| [68] |
Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
| [69] |
C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118(2016) 164-176.
DOI URL |
| [70] |
L. Lilensten, J.P. Couzinie, L. Perriere, A. Hocini, C. Keller, G. Dirras, I. Guillot, Acta Mater. 142(2018) 131-141.
DOI URL |
| [71] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33(2018) 3092-3128.
DOI URL |
| [72] |
C.E. Carlton, P.J. Ferreira, Acta Mater. 55(2007) 3749-3756.
DOI URL |
| [73] |
D.H. Lee, I.C. Choi, M.Y. Seok, J.Y. He, Z.P. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon, J.I. Jang, J. Mater. Res. 30(2015) 2804-2815.
DOI URL |
| [74] |
S. Gangireddy, B. Gwalani, R.S. Mishra, Mater. Sci. Eng. A 736 (2018) 344-348.
DOI URL |
| [1] | Ahmad Ostovari Moghaddam, Nataliya A. Shaburova, Marina N. Samodurova, Amin Abdollahzadeh, Evgeny A. Trofimov. Additive manufacturing of high entropy alloys: A practical review [J]. J. Mater. Sci. Technol., 2021, 77(0): 131-162. |
| [2] | Yuyang Tang, Yuqing Li, Xiaochang Xu, Ming Yue, Weiqiang Liu, Hongguo Zhang, Qingmei Lu, Weixing Xia. Analysis on deformation and texture formation mechanism of hot-deformed Nd-Fe-B magnets based on heterogeneous structure evolution [J]. J. Mater. Sci. Technol., 2021, 80(0): 28-35. |
| [3] | Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 124-131. |
| [4] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
| [5] | Jie Wang, Gaoming Zhu, Leyun Wang, Evgenii Vasilev, Jun-Sang Park, Gang Sha, Xiaoqin Zeng, Marko Knezevic. Origins of high ductility exhibited by an extruded magnesium alloy Mg-1.8Zn-0.2Ca: Experiments and crystal plasticity modeling [J]. J. Mater. Sci. Technol., 2021, 84(0): 27-42. |
| [6] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
| [7] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
| [8] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
| [9] | Jingyu Pang, Hongwei Zhang, Long Zhang, Zhengwang Zhu, Huameng Fu, Hong Li, Aimin Wang, Zhengkun Li, Haifeng Zhang. Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping [J]. J. Mater. Sci. Technol., 2021, 78(0): 74-80. |
| [10] | Xiaoming Sun, Lingzhong Du, Hao Lan, Jingyi Cui, Liang Wang, Runguang Li, Zhiang Liu, Junpeng Liu, Weigang Zhang. Mechanical, corrosion and magnetic behavior of a CoFeMn1.2NiGa0.8 high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 139-144. |
| [11] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
| [12] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
| [13] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
| [14] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
| [15] | Jie Xu, Xuan Kong, Minghui Chen, Qunchang Wang, Fuhui Wang. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation [J]. J. Mater. Sci. Technol., 2021, 82(0): 207-213. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
