J. Mater. Sci. Technol. ›› 2021, Vol. 84: 133-138.DOI: 10.1016/j.jmst.2020.12.043
• Research Article • Previous Articles Next Articles
Chaoqiang Liua,b, Houwen Chenb,c,*(), Min Songa, Jian-Feng Nied,**(
)
Received:
2020-10-26
Revised:
2020-12-03
Accepted:
2020-12-14
Published:
2021-09-10
Online:
2021-01-30
Contact:
Houwen Chen,Jian-Feng Nie
About author:
** E-mail addresses: jianfeng.nie@monash.edu (J.-F. Nie).Chaoqiang Liu, Houwen Chen, Min Song, Jian-Feng Nie. Electron beam irradiation induced metastable phase in a Mg-9.8 wt%Sn alloy[J]. J. Mater. Sci. Technol., 2021, 84: 133-138.
Fig. 1. (a-c) HAADF-STEM images showing β′′ phase along (a) [$2\bar{1}\bar{1}0$]α, (b) [$01\bar{1}0$]α and (c) [0001]α, respectively, in samples that are solution treated and then irradiated for 1 h by electron beam. (d-f) SAED patterns of electron beam irradiated areas along (d) [$2\bar{1}\bar{1}0$]α, (e) [$01\bar{1}0$]α and (f) [0001]α, respectively.
Fig. 2. (a) [$2\bar{1}\bar{1}0$]α, (b) [$01\bar{1}0$]α and (c) [0001]α atomic-resolution HAADF-STEM images showing the structure of β′′. (d) Schematic diagram showing a β′′ unit cell. (e-g) Perspective views of β′′ along (e) [$2\bar{1}\bar{1}0$]β′′, (f) [$01\bar{1}0$]β′′ and (g) [0001]β′′, respectively. Yellow lines outline the arrangements of bright atomic columns in (a-c) and Sn-rich columns in (e-g). A and B represent the stacking sequence of the closely packed planes of α-Mg in (a).
Fig. 3. Simulated superimposed SAED patterns of β′′ phase and α-Mg matrix along (a) [$2\bar{1}\bar{1}0$]β′′/[$2\bar{1}\bar{1}0$]α, (b) [$01\bar{1}0$]β′′/[$01\bar{1}0$]α and (c) [0001]β′′/[0001]α zone axes. Hollow circle represents the diffraction spot of α-Mg and solid dot represents the diffraction spot of β′′. Symbol × represents the spot that does not meet the reflection conditions.
Fig. 4. Schematic diagrams showing the relaxed supercell structures of two states. (a) Initial state: two Sn atoms dissolving separately in α-Mg matrix. (b) Final state: two Sn atoms binding together to form a β′′ unit cell. The β′′ unit cell is outlined by blue rhomboid in (b).
Phase | Atomic coordinates | Lattice constant (nm) | Formation energies (eV/atom) | ||
---|---|---|---|---|---|
Exp. | Cal. | Exp. | Cal. | ||
β′′ | Mg: | Mg: | -0.111 | ||
(0.8333, 0.6667, 0.25) | (0.8346, 0.6692, 0.25) | ||||
(0.1667, 0.3333, 0.75) | (0.1654, 0.3308, 0.75) | a = 0.642 | a = 0.634 | ||
(0.3333, 0.1667, 0.25) | (0.3308, 0.1654, 0.25) | c = 0.521 | c = 0.522 | ||
(0.6667, 0.8333, 0.75) | (0.6692, 0.8346, 0.75) | α = 90° | α = 90° | ||
(0.8333, 0.1667, 0.25) | (0.8346, 0.1654, 0.25) | β = 90° | β = 90° | ||
(0.1667, 0.8333, 0.75) | (0.1654, 0.8346, 0.75) | γ = 120° | γ = 120° | ||
Sn: | Sn: | ||||
(0.3333, 0.6667, 0.25) | (0.3333, 0.6667, 0.25) | ||||
(0.6667, 0.3333, 0.75) | (0.6667, 0.3333, 0.75) |
Table 1 Lattice constants (nm) and formation energies (eV/atom) of β′′.
Phase | Atomic coordinates | Lattice constant (nm) | Formation energies (eV/atom) | ||
---|---|---|---|---|---|
Exp. | Cal. | Exp. | Cal. | ||
β′′ | Mg: | Mg: | -0.111 | ||
(0.8333, 0.6667, 0.25) | (0.8346, 0.6692, 0.25) | ||||
(0.1667, 0.3333, 0.75) | (0.1654, 0.3308, 0.75) | a = 0.642 | a = 0.634 | ||
(0.3333, 0.1667, 0.25) | (0.3308, 0.1654, 0.25) | c = 0.521 | c = 0.522 | ||
(0.6667, 0.8333, 0.75) | (0.6692, 0.8346, 0.75) | α = 90° | α = 90° | ||
(0.8333, 0.1667, 0.25) | (0.8346, 0.1654, 0.25) | β = 90° | β = 90° | ||
(0.1667, 0.8333, 0.75) | (0.1654, 0.8346, 0.75) | γ = 120° | γ = 120° | ||
Sn: | Sn: | ||||
(0.3333, 0.6667, 0.25) | (0.3333, 0.6667, 0.25) | ||||
(0.6667, 0.3333, 0.75) | (0.6667, 0.3333, 0.75) |
[1] |
C.L. Mendis, C.J. Bettles, M.A. Gibson, S. Gorsse, C.R. Hutchinson, Philos. Mag. Lett. 86 (2006) 443-456.
DOI URL |
[2] |
T.T. Sasaki, K. Oh-ishi, T. Ohkubo, K. Hono, Scr. Mater. 55 (2006) 251-254.
DOI URL |
[3] |
M. Zhang, W.Z. Zhang, G.Z. Zhu, K. Yu, Trans. Nonferrous Met. Soc. China 17 (2007) 1428-1432.
DOI URL |
[4] |
F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo, K. Hono, Mater. Sci. Eng. A 566 (2013) 22-29.
DOI URL |
[5] |
C.Q. Liu, H.W. Chen, J.F. Nie, Scr. Mater. 123 (2016) 5-8.
DOI URL |
[6] | C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Mater. Sci. Eng. A 435 (2006) 163-171. |
[7] | D.H. Kang, S.S. Park, Y.S. Oh, N.J. Kim, Mater. Sci. Eng. A449-451 (2007) 318-321. |
[8] |
M. Zhang, W.Z. Zhang, G.Z. Zhu, Scr. Mater. 59 (2008) 866-869.
DOI URL |
[9] |
Z.Z. Shi, W.Z. Zhang, X.F. Gu, Philos. Mag. 92 (2012) 1071-1082.
DOI URL |
[10] |
T.T. Sasaki, J.D. Ju, K. Hono, K.S. Shin, Scr. Mater. 61 (2009) 80-83.
DOI URL |
[11] |
Z.Z. Shi, F.Z. Dai, W.Z. Zhang, Mater. Sci. Technol. 28 (2012) 411-414.
DOI URL |
[12] |
Z.Z. Shi, W.Z. Zhang, J. Appl. Cryst. 48 (2015) 1745-1752.
DOI URL |
[13] |
C.Q. Liu, C. He, H.W. Chen, J.F. Nie, J. Mater. Sci. Technol. 45 (2020) 230-240.
DOI |
[14] |
C.Q. Liu, H.W. Chen, H. Liu, X.J. Zhao, J.F. Nie, Acta Mater. 144 (2018) 590-600.
DOI URL |
[15] |
C.Q. Liu, C.L. Liu, H.W. Chen, J.F. Nie, J. Mater. Sci. Technol. 34 (2018) 284-290.
DOI URL |
[16] |
C.Q. Liu, H.W. Chen, N.C. Wilson, J.F. Nie, Scr. Mater. 155 (2018) 89-93.
DOI URL |
[17] |
Y. Chai, C. He, B. Jiang, J. Fu, Z. Jiang, Q. Yang, H. Sheng, G. Huang, D. Zhang, F. Pan, J. Mater. Sci. Technol. 37 (2020) 26-37.
DOI URL |
[18] |
R. Radha, D. Sreekanth, J. Magnes. Alloy. 8 (2020) 452-460.
DOI URL |
[19] |
D. Lee, B. Kim, S.M. Baek, J. Kim, H.W. Park, J.G. Lee, S.S. Park, J. Magnes. Alloy. 8 (2020) 345-351.
DOI URL |
[20] |
X.J. Gu, W.L. Cheng, S.M. Cheng, Y.H. Liu, Z.F. Wang, H. Yu, Z.Q. Cui, L.F. Wang, H.X. Wang, J. Mater. Sci. Technol. 60 (2021) 77-89.
DOI URL |
[21] |
C.Q. Liu, H.W. Chen, C. He, Y.Y. Zhang, J.F. Nie, Mater. Charact. 113 (2016) 214-221.
DOI URL |
[22] | P. Villars, L.D. Calvert, ASM International, 1991. |
[23] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
PMID |
[24] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427.
DOI URL |
[25] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[26] |
X. Zhao, H. Chen, N. Wilson, Q. Liu, J.F. Nie, Nat. Commun. 10 (2019) 3243.
DOI URL |
[27] |
J. Nie, Y. Zhu, J. Liu, X. Fang, Science 340 (2013) 957-960.
DOI PMID |
[28] |
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[29] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[30] |
J.P. Perdew, K. Burke, M. Emzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
PMID |
[31] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192.
DOI URL |
[32] |
D. Wang, M. Amsler, V.I. Hegde, J.E. Saal, A. Issa, B.C. Zhou, X. Zeng, C. Wolverton, Acta Mater. 158 (2018) 65-78.
DOI URL |
[33] |
J.F. Nie, N.C. Wilson, Y.M. Zhu, Z. Xu, Acta Mater. 106 (2016) 260-271.
DOI URL |
[34] | J.F. Nie, Metall. Mater. Trans. A 43A (2012) 3891-3939. |
[35] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[36] |
Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, J. Magnes. Alloy 7 (2019) 58-71.
DOI URL |
[37] |
Y. Pang, Q. Li, Scr. Mater. 130 (2017) 223-228.
DOI URL |
[38] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[39] |
Y. Pang, Q. Li, Int. J. Hydrog. Energy 41 (2016) 18072-18087.
DOI URL |
[40] |
W. Xu, Y. Zhang, G. Cheng, S.N. Mathaudhu, R.O. Scattergood, C.C. Koch, E.J. Lavernia, Y. Zhu, Acta Mater. 131 (2017) 457-466.
DOI URL |
[41] |
R.F. Egerton, P. Li, M. Malac, Micron 35 (2004) 399-409.
PMID |
[42] |
H. Zheng, Y. Liu, F. Cao, S. Wu, S. Jia, A. Cao, D. Zhao, J. Wang, Sci. Rep. 3 (2013) 1920.
DOI PMID |
[1] | Yaxin Bi, Yanling Yang, Xiao-Lei Shi, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Guoquan Suo, Siyu Lu, Zhi-Gang Chen. Full-spectrum responsive photocatalytic activity via non-noble metal Bi decorated mulberry-like BiVO4 [J]. J. Mater. Sci. Technol., 2021, 83(0): 102-112. |
[2] | Kaustubh Bawane, Kathy Lu, Xian-Ming Bai, Jing Hu, Meimei Li, Peter M. Baldo, Edward Ryan. Microstructural evolution of a silicon carbide-carbon coated nanostructured ferritic alloy composite during in-situ Kr ion irradiation at 300°C 450°C [J]. J. Mater. Sci. Technol., 2021, 71(0): 75-83. |
[3] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
[4] | Tiantian Wang, Jun Mei, Jianjun Liu, Ting Liao. Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: A theoretical study [J]. J. Mater. Sci. Technol., 2021, 73(0): 45-51. |
[5] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[6] | Longyan Hou, Yiyong Wu, Debin Shan, Bin Guo, Yingying Zong. Dose rate effects on shape memory epoxy resin during 1 MeV electron irradiation in air [J]. J. Mater. Sci. Technol., 2021, 67(0): 61-69. |
[7] | Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature [J]. J. Mater. Sci. Technol., 2021, 67(0): 156-164. |
[8] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[9] | Zijian Zhang, En-Hou Han, Chao Xiang. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding [J]. J. Mater. Sci. Technol., 2021, 84(0): 230-238. |
[10] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[11] | Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 124-131. |
[12] | Zejiang Yu, Wei Zheng, Zhiqiang Li, Yunzhuo Lu, Xinbing Yun, Zuoxiang Qin, Xing Lu. Accelerated exploration of TRIP metallic glass composite by laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 78(0): 68-73. |
[13] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[14] | Yuchen Liu, Yu Zhou, Dechang Jia, Juanli Zhao, Banghui Wang, Yuanyuan Cui, Qian Li, Bin Liu. Composition dependent intrinsic defect structures in ASnO3 (A = Ca, Sr, Ba) [J]. J. Mater. Sci. Technol., 2020, 42(0): 212-219. |
[15] | Jin Bai, Xiao Chen, Emilia Olsson, Huimin Wu, Shiquan Wang, Qiong Cai, Chuanqi Feng. Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 50(0): 92-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||