J. Mater. Sci. Technol. ›› 2021, Vol. 84: 1-9.DOI: 10.1016/j.jmst.2020.12.015
• Research Article • Next Articles
Qinqin Weia,b,1, Guoqiang Luoa,1, Rong Tua, Jian Zhanga, Qiang Shena,*(), Yujie Cuib,*(
), Yunwei Guib, Akihiko Chibab
Received:
2020-08-07
Revised:
2020-12-03
Accepted:
2020-12-04
Published:
2021-09-10
Online:
2021-01-20
Contact:
Qiang Shen,Yujie Cui
About author:
cuiyujie@imr.tohoku.ac.jp (Y. Cui).1Qinqin Wei and Guoqiang Luo contributed equally to this work.
Qinqin Wei, Guoqiang Luo, Rong Tu, Jian Zhang, Qiang Shen, Yujie Cui, Yunwei Gui, Akihiko Chiba. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite[J]. J. Mater. Sci. Technol., 2021, 84: 1-9.
Fig. 1. Microstructure of the as-cast Re0.5MoNbW(TaC)0.5 composite. (a) EBSD phase map and (b) TEM bright-field image. The insets show the selected area electron-beam diffraction patterns of the BCC and FCC-MC phases, respectively. Z. A. refers to zone axis. (c) HRTEM image of BCC/FCC-MC phase interface.
Fig. 2. (a) XRD patterns and (b-d) BSE images of the Re0.5MoNbW(TaC)0.5 composite: (b) as-cast, (c) annealed at 1300 ℃ for 72 h, (d) annealed at 1300 ℃ for 168 h.
Phase | Mo | Nb | Re | W | Ta | C | |
---|---|---|---|---|---|---|---|
As-cast | BCC | 23.4 ± 0.7 | 16.7 ± 1.4 | 13.4 ± 1.3 | 33.8 ± 0.3 | 12.7 ± 0.5 | 0 |
FCC-MC | 7.2 ± 0.1 | 38.4 ± 1.2 | 0 | 3.8 ± 0.5 | 16.0 ± 0.8 | 34.6 ± 1.8 | |
Annealed for 72 h | BCC | 25.1 ± 0.8 | 17.4 ± 0.8 | 13.6 ± 0.6 | 32.7 ± 0.6 | 11.2 ± 1.2 | 0 |
FCC-MC | 6.9 ± 0.4 | 39.5 ± 0.5 | 0 | 3.9 ± 0.4 | 15.4 ± 0.7 | 34.3 ± 1.5 | |
Annealed for 168 h | BCC | 25.6 ± 0.9 | 16.8 ± 0.7 | 14.7 ± 0.4 | 31.3 ± 0.5 | 11.7 ± 1.0 | 0 |
FCC-MC | 7.1 ± 0.4 | 37.3 ± 1.0 | 0 | 3.8 ± 0.7 | 16.7 ± 0.7 | 35.1 ± 2.2 |
Table 1 Chemical compositions of the phases in the Re0.5MoNbW(TaC)0.5 composite obtained from SEM-EDS.
Phase | Mo | Nb | Re | W | Ta | C | |
---|---|---|---|---|---|---|---|
As-cast | BCC | 23.4 ± 0.7 | 16.7 ± 1.4 | 13.4 ± 1.3 | 33.8 ± 0.3 | 12.7 ± 0.5 | 0 |
FCC-MC | 7.2 ± 0.1 | 38.4 ± 1.2 | 0 | 3.8 ± 0.5 | 16.0 ± 0.8 | 34.6 ± 1.8 | |
Annealed for 72 h | BCC | 25.1 ± 0.8 | 17.4 ± 0.8 | 13.6 ± 0.6 | 32.7 ± 0.6 | 11.2 ± 1.2 | 0 |
FCC-MC | 6.9 ± 0.4 | 39.5 ± 0.5 | 0 | 3.9 ± 0.4 | 15.4 ± 0.7 | 34.3 ± 1.5 | |
Annealed for 168 h | BCC | 25.6 ± 0.9 | 16.8 ± 0.7 | 14.7 ± 0.4 | 31.3 ± 0.5 | 11.7 ± 1.0 | 0 |
FCC-MC | 7.1 ± 0.4 | 37.3 ± 1.0 | 0 | 3.8 ± 0.7 | 16.7 ± 0.7 | 35.1 ± 2.2 |
Fig. 4. Compressive (a) engineering and (b) true stress-strain curves of the as-cast Re0.5MoNbW(TaC)0.5 composite. The inset in (b) shows the corresponding work hardening curves. Temperature dependence of engineering (c) yield strength and (d) ultimate compressive strength obtained here, relative to some other high-temperature materials [9,24,25].
Fig. 5. Microstructure of the composite after compression at 1200 ℃. (a) HAADF-STEM micrograph and (b) TEM bright-field micrograph. (c-h) The corresponding EDX maps of image (a).
Fig. 6. TEM micrographs of the phase interface after compression at 1200 ℃. (a) HRTEM image and (b) a Fourier-filtered image of the phase interface. (c) The enlarged image of the white outlined region in (b) showing screw dislocations in BCC near the interface. (d) FFT patterns of the image (a) showing the relationship between BCC HEA and FCC-MC carbide.
Fig. 7. TEM bright-field micrographs of the deformed BCC HEA after compression at 1200 ℃. (a) Dislocation dipolar walls in BCC and pile-ups in the phase interface. (b) The enlarged micrograph in (a) showing dislocation dipoles and dislocation pinning.
Fig. 8. TEM micrographs of deformed FCC-MC carbide after compression at 1200 ℃. (a) TEM bright-field micrograph and (b) the corresponding enlarged image showing stacking faults and coplanar dislocation arrays. (c) TEM and (d) the corresponding HRTEM micrographs showing deformation twins. (e) A Fourier-filtered image near the large twin boundary in (d). (f) FFT pattern showing the twin relationship in (d).
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[2] |
Z. Zhang, M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6 (2015) 10143.
DOI URL |
[3] |
I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Mater. Res. Lett. 4 (2016) 174-179.
DOI URL |
[4] |
X. Guo, X. Xie, J. Ren, M. Laktionova, E. Tabachnikova, L. Yu, W.S. Cheung, K.A. Dahmen, P.K. Liaw, Appl. Phys. Lett. 111 (2017) 251905.
DOI URL |
[5] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[6] |
W.M. Guo, B. Liu, Y. Liu, T.C. Li, A. Fu, Q.H. Fang, Y. Nie, J. Alloys. Compd. 776 (2019) 428-436.
DOI URL |
[7] |
R.R. Eleti, A.H. Chokshi, A. Shibata, N. Tsuji, Acta Mater. 183 (2020) 64-77.
DOI URL |
[8] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765.
DOI URL |
[9] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706.
DOI URL |
[10] |
Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta Mater. 65 (2014) 85-97.
DOI URL |
[11] | S. Sohn, Y. Liu, J. Liu, P. Gong, S. Prades-Rodel, A. Blatter, B. Scanley, C. Broadbridge, J. Schroers. Scr. Mater. 126 (2017) 29-32. |
[12] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[13] |
Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruang, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[14] |
X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater. 141 (2017) 59-66.
DOI URL |
[15] |
F. He, Z. Wang, P. Cheng, Q. Wang, J. Li, Y. Dang, J. Wang, C.T. Liu, J. Alloys Compd. 656 (2016) 284-289.
DOI URL |
[16] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Alloys Compd. 660 (2016) 197-203.
DOI URL |
[17] |
Q.Q. Wei, Q. Shen, J. Zhang, Y. Zhang, G.Q. Luo, L.M. Zhang, J. Alloys. Compd. 777 (2019) 1168-1175.
DOI URL |
[18] | Q. Xu, D.Z. Chen, C.Y. Tan, X.Q. Bi, Q. Wang, H.Z. Cui, S.Y. Zhang, R.R. Chen, J. Mater, Sci. Technol. 60 (2021) 1-7. |
[19] |
H. Jiang, D.X. Qiao, W.N. Jiao, K.M. Han, Y.P. Lu, P.K. Liaw, J. Mater. Sci. Technol. 61 (2021) 119-124.
DOI |
[20] |
Y.L. Zhang, J.G. Li, X.G. Wang, Y.P. Lu, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 35 (2019) 902-906.
DOI |
[21] |
Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li. Sci. Rep. 4 (2014) 6200.
DOI URL |
[22] |
Y.P. Lu, Y. Dong, H. Jiang, Z.J. Wang, Z.Q. Cao, S. Guo, T.M. Wang, T.J. Li, P.K. Liaw, Scr. Mater. 187 (2020) 202-209.
DOI URL |
[23] | R.J. Arsenault, Treatise on Materials Science and Technology, Vol. 6, Plastic Deformation of Materials, Academic press, United States, 1975, pp. 393-493. |
[24] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Design 81 (2015) 87-94.
DOI URL |
[25] |
Y. Liu, Y. Zhang, H. Zhang, N.J. Wang, X. Chen, H.W. Zhang, Y.X. Li, J. Alloys. Compd. 694 (2017) 869-876.
DOI URL |
[26] | R.E. Reed-Hill, Physical Metallurgy Principles, Van Nostrand, New York, USA, 1973. |
[27] |
C. Yang, L.M. Kang, X.X. Li, W.W. Zhang, D.T. Zhang, Z.Q. Fu, Y.Y. Li, L.C. Zhang, E.J. Lavernia, Acta Mater. 132 (2017) 491-502.
DOI URL |
[28] |
B. Schuh, B. Volker, J. Todt, N. Schell, L. Perriere, J. Li, J.P. Couzinie, A. Hohenwarter, Acta Mater. 142 (2018) 201-212.
DOI URL |
[29] |
J.E. Saal, I.S. Berglund, J.T. Sebastian, P.K. Liaw, G.B. Olson, Scr. Mater. 146 (2018) 5-8.
DOI URL |
[30] |
F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, Calphad 45 (2014) 1-10.
DOI URL |
[31] |
G. Sharma, R.V. Ramanujan, G.P. Tiwari, Acta Mater. 48 (2000) 875-889.
DOI URL |
[32] | R.W. Balluffi, S. Allen, W.C. Carter, Kinetics of Materials, John Wiley & Sons, 2005. |
[33] |
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61 (2013) 4887-4897.
DOI URL |
[34] |
D. Gupta, K. Vieregge, W. Gust, Acta Mater. 47 (1998) 5-12.
DOI URL |
[35] | F.R.N. Nabarro, M.S. Duesbery, Dislocations in Solids, Vol. 11, Elsevier, Amsterdam, 2002. |
[36] |
R. Liu, Z.J. Zhang, L.L. Li, X.H. An, Z.F. Zhang, Sci. Rep. 5 (2015) 9550.
DOI PMID |
[37] |
H.M. Ding, X.L. Fan, K.Y. Chu, X.C. Zhang, X.F. Liu, J. Eur. Ceram. Soc. 34 (2014) 1893-1897.
DOI URL |
[38] |
A. Kelly, D.J. Rowcliffe, J. Am. Ceram. Soc. 50 (1967) 253.
DOI URL |
[39] | G.E. Dieter, D.J. Bacon, Mechanical Metallurgy, vol 3, McGraw-Hill, New York, 1986. |
[40] |
M.D. Sangid, Int. J. Fatigue 57 (2013) 58.
DOI URL |
[41] |
F. He, Z.J. Wang, Q.F. Wu, D. Chen, T. Yang, J.J. Li, J.C. Wang, C.T. Liu, J.J. Kai, Scr. Mater. 155 (2018) 134-138.
DOI URL |
[42] | T. Leonhardt, Jom 61 (2009) 68-71. |
[43] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563 (2018) 546-550.
DOI URL |
[44] |
I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59 (2011) 6449-6462.
DOI URL |
[45] |
C.L. Yang, Z.J. Zhang, T. Cai, P. Zhang, Z.F. Zhang, Sci. Rep. 5 (2015) 15532.
DOI PMID |
[46] |
Y.Z. Tian, L.J. Zhao, S. Chen, A. Shibata, Z.F. Zhang, N. Tsuji, Sci. Rep. 5 (2015) 16707.
DOI PMID |
[47] |
L. Lu, X. Chen, X. Huang, K. Lu, Science 323 (2009) 607-610.
DOI PMID |
[48] | K.Lu. Nat, Rev. Mater. 1 (2016) 1-13. |
[1] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[2] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[3] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement [J]. J. Mater. Sci. Technol., 2021, 70(0): 250-267. |
[4] | K. Ma, Z.Y. Liu, X.X. Zhang, B.L. Xiao, Z.Y. Ma. Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure [J]. J. Mater. Sci. Technol., 2021, 70(0): 73-82. |
[5] | Lu Yang, Zhuo Cheng, Weiwei Zhu, Cancan Zhao, Fuzeng Ren. Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure [J]. J. Mater. Sci. Technol., 2021, 73(0): 1-8. |
[6] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
[7] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[8] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[9] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[10] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[11] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[12] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[13] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[14] | Lingling Liu, Yeqiang Bu, Yue Sun, Jianfeng Pan, Jiabin Liu, Jien Ma, Lin Qiu, Youtong Fang. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils [J]. J. Mater. Sci. Technol., 2021, 74(0): 237-245. |
[15] | Hongxia Wan, Dongdong Song, Xiaolei Shi, Yong Cai, Tingting Li, Changfeng Chen. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. J. Mater. Sci. Technol., 2021, 60(0): 197-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||