J. Mater. Sci. Technol. ›› 2021, Vol. 82: 21-32.DOI: 10.1016/j.jmst.2020.10.084
• Research Article • Previous Articles Next Articles
Dong-Eun Leea, Satyanarayana Morub,c, Wan-Kuen Joa, Surendar Tondaa,*()
Received:
2020-08-03
Revised:
2020-10-12
Accepted:
2020-10-14
Published:
2021-01-16
Online:
2021-01-16
Contact:
Surendar Tonda
About author:
∗ E-mail address: surendart@knu.ac.kr (S. Tonda).Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals[J]. J. Mater. Sci. Technol., 2021, 82: 21-32.
Fig. 3. (a) TEM, (b) magnified TEM, and (c) HRTEM images of the CN/TOHS-15. (d?h) STEM-HAADF elemental distribution maps of constituent elements in the CN/TOHS-15 hybrid.
Fig. 5. Comparison of the photocatalytic activities of all synthesized samples in the elimination of (a) ACT and (c) CIP, and the corresponding first-order kinetics plots for (b) ACT and (d) CIP.
Fig. 6. (a) PL spectra, (b) photocurrent responses, and (c) EIS profiles of TOHS, CN, CN/TOHS-15, and CN/TONP photocatalysts. (d) Recyclability of the CN/TOHS-15 hybrid for the degradation of ACT.
Fig. 8. (a) Effects of different scavengers on the decomposition of ACT with the CN/TOHS-15, TOHS, and CN catalysts. DMPO spin-trapping ESR profiles of TOHS, CN, and CN/TOHS-15 catalysts for (b) DMPO-O2·- and (c) DMPO-·OH illuminated for 6 min.
[1] |
S.K. Khetan, T.J. Collins, Chem. Rev. 107 (2007) 2319-2364.
DOI URL |
[2] |
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452 (2008) 301-310.
DOI URL |
[3] |
R. Das, C.D. Vecitis, A. Schulze, B. Cao, A.F. Ismail, X. Lu, J. Chen, S. Ramakrishna, Chem. Soc. Rev. 46 (2017) 6946-7020.
DOI URL |
[4] |
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69-96.
DOI URL |
[5] |
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24 (2012) 229-251.
DOI URL |
[6] |
K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 13 (2012) 169-189.
DOI URL |
[7] |
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114 (2014) 9919-9986.
DOI PMID |
[8] |
H. Xu, S. Ouyang, P. Li, T. Kako, J. Ye, ACS Appl. Mater. Interfaces 5 (2013) 1348-1354.
DOI URL |
[9] |
I.S. Cho, M. Logar, C.H. Lee, L. Cai, F.B. Prinz, X. Zheng, Nano Lett. 14 (2014) 24-31.
DOI URL |
[10] |
P. Kar, S. Farsinez, N. Mahdi, Y. Zhang, U. Obuekwe, H. Sharma, J. Shen, N. Semagina, K. Shankar, Nano Res. 9 (2016) 3478-3493.
DOI URL |
[11] |
Y. Zhang, Z. Zhao, J. Chen, L. Cheng, J. Chang, W. Sheng, C. Hu, S. Cao, Appl. Catal. B 165 (2015) 715-722.
DOI URL |
[12] |
Y. Cao, Z. Xing, M. Hu, Z. Li, X. Wu, T. Zhao, Z. Xiu, S. Yang, W. Zhou, J. Catal. 356 (2017) 246-254.
DOI URL |
[13] |
W. Hu, W. Zhou, K. Zhang, X. Zhang, L. Wang, B. Jiang, G. Tian, D. Zhao, H. Fu, J. Mater. Chem. A 4 (2016) 7495-7502.
DOI URL |
[14] |
L. Wei, C. Yu, Q. Zhang, H. Liu, Y. Wang, J. Mater. Chem. A 6 (2018) 22411-22436.
DOI URL |
[15] |
Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 31 (2019), 1901997.
DOI URL |
[16] |
X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76-80.
DOI URL |
[17] |
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159-7329.
DOI URL |
[18] |
J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018), 1701503.
DOI URL |
[19] |
J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15 (2013) 16883-16890.
DOI URL |
[20] |
P. Chen, L. Chen, S. Ge, W. Zhang, M. Wu, P. Xing, T.B. Rotamond, H. Lin, Y. Wu, Y. He, Int. J. Hydrogen Energy 45 (2020) 14354-14367.
DOI URL |
[21] |
Q. Zhang, P. Chen, L. Chen, M. Wu, X. Dai, P. Xing, H. Lin, L. Zhao, Y. He, J. Colloid Interface Sci. 568 (2020) 117-129.
DOI URL |
[22] |
Z. Feng, L. Zeng, Q. Zhang, S. Ge, X. Zhao, H. Lin, Y. He, J. Environ. Sci. 87 (2020) 149-162.
DOI URL |
[23] |
P. Chen, P. Xing, Z. Chen, X. Hu, H. Lin, L. Zhao, Y. He, J. Colloid Interface Sci. 534 (2019) 163-171.
DOI URL |
[24] |
H. Tang, Q. Shang, Y. Tang, X. Yi, Y. Wei, K. Yin, M. Liu, C. Liu, J. Hazard. Mater. 384 (2020), 121248.
DOI URL |
[25] | L. Gu, J.Y. Wang, Z.J. Zou, X.J. Han, J. Hazard. Mater. 268C (2014) 216-223. |
[26] |
R. Zhang, Y. Yu, H. Wang, J. Du, Sci. Total Environ. 724 (2020), 138280.
DOI URL |
[27] |
J. Li, M. Zhang, X. Li, Q. Li, J. Yang, Appl. Catal. B 212 (2017) 106-114.
DOI URL |
[28] |
W.K. Jo, S. Moru, S. Tonda, J. Mater. Chem. A 8 (2020) 8020-8032.
DOI URL |
[29] |
W.K. Jo, S. Kumar, S. Eslava, S. Tonda, Appl. Catal. B 239 (2018) 586-598.
DOI URL |
[30] |
J. Pan, Z. Dong, B. Wang, Z. Jiang, C. Zhao, J. Wang, C. Song, Y. Zheng, C. Li, Appl. Catal. B 242 (2019) 92-99.
DOI URL |
[31] |
A.B. Dehkordi, A. Ziarati, J.B. Ghasemi, A. Badiei, Sol. Energy 205 (2020) 465-473.
DOI URL |
[32] |
Y. Zou, J.W. Shi, D. Ma, Z. Fan, L. Lu, C. Niu, Chem. Eng. J. 322 (2017) 435-444.
DOI URL |
[33] |
Y. Jiang, F. Li, Y. Liu, Y. Hong, P. Liu, L. Ni, J. Ind. Eng. Chem. 41 (2016) 130-140.
DOI URL |
[34] |
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
DOI URL |
[35] |
S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav, S.B. Ogale, ACS Appl. Mater. Interfaces 10 (2018) 2667-2678.
DOI URL |
[36] |
K.S.W. Sing, D.H. Everett, R. A.W.Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57 (1985) 603-619.
DOI URL |
[37] |
Z. Jiang, C. Zhu, W. Wan, K. Qian, J. Xie, J. Mater. Chem. A 4 (2016) 1806-1818.
DOI URL |
[38] |
L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, Y. Zhang, Q. Zhu, S. Yang, W. Zhou, Sci. Rep. 7 (2017) 41978.
DOI URL |
[39] |
W.K. Jo, Y.G. Kim, S. Tonda, J. Hazard. Mater. 357 (2018) 19-29.
DOI URL |
[40] |
Y. Jia, C. Wu, B.W. Lee, C. Liu, S. Kang, T. Lee, Y.C. Park, R. Yoo, W. Lee, J. Hazard. Mater. 338 (2017) 447-457.
DOI URL |
[41] |
W.K. Jo, S. Moru, S. Tonda, ACS Sustain. Chem. Eng. 7 (2019) 15373-15384.
DOI URL |
[42] |
W.K. Jo, S. Kumar, S. Tonda, Compos. Part B 176 (2019), 107212.
DOI URL |
[43] |
R. Zhang, Y. Yu, H. Wang, J. Du, Sci. Total Environ. 724 (2020), 138280.
DOI URL |
[44] |
J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang, J. Xu, S. Komarneni, Appl. Catal. B 206 (2017) 406-416.
DOI URL |
[45] |
J. Cai, X. Wu, S. Li, F. Zheng, L. Zhu, Z. Lai, ACS Appl. Mater. Interfaces 7 (2015) 3764-3772.
DOI URL |
[46] |
Y. Dou, S. Zhang, T. Pan, S. Xu, A. Zhou, M. Pu, H. Yan, J. Han, M. Wei, D.G. Evans, X. Duan, Adv. Funct. Mater. 25 (2015) 2243-2249.
DOI URL |
[47] |
Y. Chen, W. Lu, H. Shen, Y. Gu, T. Xu, Z. Zhu, G. Wang, W. Chen, Appl. Catal. B 258 (2019), 117960.
DOI URL |
[48] |
S. Tonda, S. Kumar, S. Kandula, V. Shanker, J. Mater. Chem. A 2 (2014) 6772-6780.
DOI URL |
[49] |
Y. He, X. Dai, S. Ma, L. Chen, Z. Feng, P. Xing, J. Yu, Y. Wu, Ceram. Int. 46 (2020) 11421-11426.
DOI URL |
[50] |
L. Zeng, F. Zhe, Y. Wang, Q. Zhang, X. Zhao, X. Hu, Y. Wu, Y. He, J. Colloid Interface Sci. 539 (2019) 563-574.
DOI URL |
[51] |
P. Xing, W. Zhang, L. Chen, X. Dai, J. Zhang, L. Zhao, Y. He, Sustain. Energy Fuels 4 (2020) 1112-1117.
DOI URL |
[52] |
J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater. 31 (2019), 1802981.
DOI URL |
[53] |
J. Liu, B. Cheng, J. Yu, Phys. Chem. Chem. Phys. 18 (2016) 31175-31183.
DOI URL |
[54] | J. Liu, J. Zhang, D. Wang, D. Li, J. Ke, S. Wang, S. Liu, H. Xiao, R. Wang, ACS Sustain. Chem. Eng. 7 (2019) 12428-12438. |
[55] |
F. Huang, B. Cho, H.S. Chung, S.B. Son, J.H. Kim, T.S. Bae, H.J. Yun, J.I. Sohn, K.H. Oh, M.G. Hahm, J.H. Park, W.K. Hong, Nanoscale 8 (2016) 17598-17607.
PMID |
[56] |
A.J. Nozik, R. Memming, J. Phys. Chem. 100 (1996) 13061-13078.
DOI URL |
[57] |
K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, N. Nuraje, J. Mater. Chem. A 6 (2018) 21696-21718.
DOI URL |
[58] |
Q. Xu, Li. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Mater. Today 21 (2018) 1042-1063.
DOI URL |
[59] |
F. Su, S.C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert, X. Wang, J. Am. Chem. Soc. 132 (2010) 16299-16301.
DOI URL |
[60] |
C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu, H. Tang, G. Li, Y. Jiang, F. Qu, Z. Lin, X. Yang, Appl. Catal. B 256 (2019), 117867.
DOI URL |
[61] |
T. Tachikawa, T. Ochi, Y. Kobori, ACS Catal. 6 (2016) 2250-2256.
DOI URL |
[62] |
O. Nasr, O. Mohamed, A.S. Al-Shirbini, A.M. Abdel-Wahab, J. Photochem. Photobiol. A 374 (2019) 185-193.
DOI URL |
[63] |
B. Li, X. Ma, J. Deng, Q. Li, W. Chen, G. Li, G. Chen, J. Wang, Sci. Total Environ. 723 (2020), 137993.
DOI URL |
[64] |
Y. Li, W. Song, W. Fu, D.C.W. Tsang, X. Yan, Chem. Eng. J. 271 (2015) 214-222.
DOI URL |
[65] |
X. Feng, P. Wang, J. Hou, J. Qian, C. Wang, Y. Ao, Chem. Eng. J. 352 (2018) 947-956.
DOI URL |
[66] |
E. Moctezuma, E. Leyva, C.A. Aguilar, R.A. Luna, C. Montalvo, J. Hazard. Mater. 243 (2012) 130-138.
DOI PMID |
[67] |
X. Hu, X. Hu, Q. Peng, L. Zhou, X. Tan, L. Jiang, C. Tang, H. Wang, S. Liu, Y. Wang, Z. Ning, Chem. Eng. J. 380 (2020), 122366.
DOI URL |
[68] | X.J. Wen, C.G. Niu, L. Zhang, C. Liang, H. Guo, G.M. Zeng, J. Catal. 358 (2018) 141-154. |
[69] |
M. Jimenez-Salcedo, M. Monge, M.T. Tena, Chemosphere 247 (2020), 125910.
DOI URL |
[70] |
Z. Jia, T. Lia, Z. Zheng, J. Zhang, J. Liu, R. Li, Y. Wang, X. Zhang, Y. Wang, C. Fan, Chem. Eng. J. 380 (2020), 122422.
DOI URL |
[71] |
C.H. Shen, X.J. Wen, Z.H. Fei, Z.T. Liu, Q.M. Mu, Chem. Eng. J. 391 (2020), 123612.
DOI URL |
[1] | Chang Feng, Zhuoyuan Chen, Jiangping Jing, Mengmeng Sun, Jing Tian, Guiying Lu, Li Ma, Xiangbo Li, Jian Hou. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators [J]. J. Mater. Sci. Technol., 2021, 80(0): 75-83. |
[2] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[3] | Qiaoqiao Li, Wenli Zhao, Zicheng Zhai, Kaixu Ren, Tingyu Wang, Hao Guan, Haifeng Shi. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading [J]. J. Mater. Sci. Technol., 2020, 56(0): 216-226. |
[4] | Yuting Gao, Feng Chen, Zhe Chen, Hongfei Shi. NixCo1-xS as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C3N4 [J]. J. Mater. Sci. Technol., 2020, 56(0): 227-235. |
[5] | Yiming Xiang, Qilin Zhou, Zhaoyang Li, Zhenduo Cui, Xiangmei Liu, Yanqin Liang, Shengli Zhu, Yufeng Zheng, Kelvin Wai Kwok Yeung, Shuilin Wu. A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing [J]. J. Mater. Sci. Technol., 2020, 57(0): 1-11. |
[6] | Miao-Miao Fang, Jun-Xia Shao, Xiang-Gang Huang, Jin-Yi Wang, Wei Chen. Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation [J]. J. Mater. Sci. Technol., 2020, 56(0): 133-142. |
[7] | Jing Xu, Zhouping Wang, Yongfa Zhu. Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering [J]. J. Mater. Sci. Technol., 2020, 49(0): 133-143. |
[8] | Zhiliang Jin, Lijun Zhang. Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution [J]. J. Mater. Sci. Technol., 2020, 49(0): 144-156. |
[9] | Yanmei Zheng, Yuanyuan Liu, Xinli Guo, Zhongtao Chen, Weijie Zhang, Yixuan Wang, Xuan Tang, Yao Zhang, Yuhong Zhao. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants [J]. J. Mater. Sci. Technol., 2020, 41(0): 117-126. |
[10] | Vellaichamy Balakumar, Hyungjoo Kim, Ji Won Ryu, Ramalingam Manivannan, Young-A Son. Uniform assembly of gold nanoparticles on S-doped g-C3N4 nanocomposite for effective conversion of 4-nitrophenol by catalytic reduction [J]. J. Mater. Sci. Technol., 2020, 40(0): 176-184. |
[11] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[12] | Er-Xun Han, Yuan-Yuan Li, Qi-Hao Wang, Wei-Qing Huang, Leng Luo, Wangyu Hu, Gui-Fang Huang. Chlorine doped graphitic carbon nitride nanorings as an efficient photoresponsive catalyst for water oxidation and organic decomposition [J]. J. Mater. Sci. Technol., 2019, 35(10): 2288-2296. |
[13] | Mitra Mousavi, Aziz Habibi-Yangjeh, Davod Seifzadeh. Novel ternary g-C3N4/Fe3O4/MnWO4 nanocomposites: Synthesis, characterization, and visible-light photocatalytic performance for environmental purposes [J]. J. Mater. Sci. Technol., 2018, 34(9): 1638-1651. |
[14] | Qian Yan, Gui-Fang Huang, Dong-Feng Li, Ming Zhang, An-Lian Pan, Wei-Qing Huang. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets [J]. J. Mater. Sci. Technol., 2018, 34(12): 2515-2520. |
[15] | Wang Songcan,Yun Jung-Ho,Luo Bin,Butburee Teera,Peerakiatkhajohn Piangjai,Thaweesak Supphasin,Xiao Mu,Wang Lianzhou. Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications [J]. J. Mater. Sci. Technol., 2017, 33(1): 1-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||