J. Mater. Sci. Technol. ›› 2021, Vol. 68: 227-235.DOI: 10.1016/j.jmst.2020.06.044
• Research Article • Previous Articles
Ji Liua,b, Jianqiu Wanga,*(), Zhiming Zhanga, Hui Zhengc
Received:
2020-04-10
Revised:
2020-05-27
Accepted:
2020-06-12
Published:
2021-03-30
Online:
2021-05-01
Contact:
Jianqiu Wang
About author:
*E-mail address: wangjianqiu@imr.ac.cn (J. Wang).Ji Liu, Jianqiu Wang, Zhiming Zhang, Hui Zheng. Repassivation behavior of alloy 690TT in simulated primary water at different temperatures[J]. J. Mater. Sci. Technol., 2021, 68: 227-235.
Ni | Cr | Fe | Mn | Ti | S | P | C | N | Si | Cu | Co | Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|
59.50 | 29.02 | 10.28 | 0.30 | 0.33 | 0.001 | 0.009 | 0.018 | 0.0234 | 0.31 | 0.010 | 0.015 | 0.16 |
Table 1 Chemical composition (in wt.%) of Alloy 690 T T used in this work.
Ni | Cr | Fe | Mn | Ti | S | P | C | N | Si | Cu | Co | Al |
---|---|---|---|---|---|---|---|---|---|---|---|---|
59.50 | 29.02 | 10.28 | 0.30 | 0.33 | 0.001 | 0.009 | 0.018 | 0.0234 | 0.31 | 0.010 | 0.015 | 0.16 |
Fig. 7. Mathematical analysis of transient current density curves of Alloy 690 T T at different temperatures. (a) Log i(t) vs q(t) curves; (b) log i(t) vs 1/q(t) curves; (c) the variation of the slope (cBV) of linear part in log i(t) vs 1/q(t) curves.
T (°C) | Ending time of PEM (s) | Starting time of HFM (s) |
---|---|---|
200 | 0.862 ± 0.1134 | 5.708 ± 1.1512 |
225 | 1.188 ± 0.1439 | 6.901 ± 1.3862 |
250 | 2.140 ± 0.2121 | 10.253 ± 2.5519 |
275 | 2.738 ± 0.5001 | 11.487 ± 2.2428 |
300 | 3.598 ± 0.4371 | 12.563 ± 1.2656 |
Table 2 Time scheme for the ending time of PEM & the starting time of HFM
T (°C) | Ending time of PEM (s) | Starting time of HFM (s) |
---|---|---|
200 | 0.862 ± 0.1134 | 5.708 ± 1.1512 |
225 | 1.188 ± 0.1439 | 6.901 ± 1.3862 |
250 | 2.140 ± 0.2121 | 10.253 ± 2.5519 |
275 | 2.738 ± 0.5001 | 11.487 ± 2.2428 |
300 | 3.598 ± 0.4371 | 12.563 ± 1.2656 |
Fig. 8. The fitting results of transient current density with Eq. (3) for Alloy 690 T T at different temperatures. (a) 200 °C; (b) 225 °C; (c) 250 °C; (d) 275 °C; (e) 300 °C.
Fig. 10. The time comparison of each stage about repassivation process analysis based on two mechanisms (place exchange model & high field ion conduction model, anodic dissolution & film formation) at different temperatures. (a) 200 °C; (b) 225 °C; (c) 250 °C; (d) 275 °C; (e) 300 °C.
T (°C) | k (s-1) | t (idiss = ifilm) (s) | t (θ>0.99) (s) | b | A (μC/cm2) |
---|---|---|---|---|---|
200 | 1.026 ± 0.002 | 1.948 ± 0.418 | 5.319 ± 0.704 | 0.632 ± 4E-4 | 6.76E-4 ± 1E-6 |
225 | 0.928 ± 0.002 | 2.164 ± 0.472 | 5.666 ± 0.749 | 0.667 ± 5E-4 | 7.54E-4 ± 1E-6 |
250 | 0.707 ± 0.001 | 2.308 ± 0.699 | 6.366 ± 1.315 | 0.669 ± 6E-4 | 6.23E-4 ± 1E-6 |
275 | 0.541 ± 0.001 | 2.710 ± 0.137 | 7.839 ± 0.303 | 0.648 ± 7E-4 | 1.34E-3 ± 3E-6 |
300 | 0.415 ± 0.001 | 3.519 ± 0.103 | 9.632 ± 0.547 | 0.631 ± 8E-4 | 1.25E-3 ± 4E-6 |
Table 3 The fitting results and standard deviation of Alloy 690 T T at different temperatures
T (°C) | k (s-1) | t (idiss = ifilm) (s) | t (θ>0.99) (s) | b | A (μC/cm2) |
---|---|---|---|---|---|
200 | 1.026 ± 0.002 | 1.948 ± 0.418 | 5.319 ± 0.704 | 0.632 ± 4E-4 | 6.76E-4 ± 1E-6 |
225 | 0.928 ± 0.002 | 2.164 ± 0.472 | 5.666 ± 0.749 | 0.667 ± 5E-4 | 7.54E-4 ± 1E-6 |
250 | 0.707 ± 0.001 | 2.308 ± 0.699 | 6.366 ± 1.315 | 0.669 ± 6E-4 | 6.23E-4 ± 1E-6 |
275 | 0.541 ± 0.001 | 2.710 ± 0.137 | 7.839 ± 0.303 | 0.648 ± 7E-4 | 1.34E-3 ± 3E-6 |
300 | 0.415 ± 0.001 | 3.519 ± 0.103 | 9.632 ± 0.547 | 0.631 ± 8E-4 | 1.25E-3 ± 4E-6 |
[1] |
S.E.L. Euch, D. Bricault, H. Cachet, E.M.M. Sutter, M.T.T. Tran, V. Vivier, N. Engler, A. Marion, M. Skocic, B. Huerta-Ortega, Electrochim. Acta, 317(2019), pp. 509-520.
DOI URL |
[2] |
J. Chen, Z. Lu, F. Meng, X. Xu, Q. Xiao, H.-S. Kim, C. Jang, J. Nucl. Mater., 517(2019), pp. 179-191.
DOI URL |
[3] |
F. Ning, J. Tan, X. Wu, J. Mater. Sci. Technol., 47(2020), pp. 76-87.
DOI URL |
[4] | H. Ming, X. Liu, J. Lai, J. Wang, L. Gao, E.-H. Han, J. Nucl. Mater., 529(2020), pp. 1-14. |
[5] |
C.O.A. Olsson, D. Landolt, Electrochim. Acta, 48(2003), pp. 1093-1104.
DOI URL |
[6] |
N. Sato, Corros Sci., 31(1990), pp. 1-19.
DOI URL |
[7] |
A. Veluchamy, D. Sherwood, B. Emmanuel, I.S. Cole, J. Electroanal. Chem., 785(2017), pp. 196-215.
DOI URL |
[8] | D.D. Macdonald, Arab. J.Sci. Eng., 37(2012), pp. 1143-1185. |
[9] |
B. Zhang, X.L. Ma, J. Mater. Sci. Technol., 35(2019), pp. 1455-1465.
DOI URL |
[10] | L. Liu, Y. Li, F. Wang J. Mater. Sci. Technol., 26(2010), pp. 1-14. |
[11] |
N. Sato, M. Cohen J. Electrochem. Soc., 111(1964), pp. 519-522.
DOI URL |
[12] | A. Güntherschulze, H. Betz, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 37(1931), pp. 726-734. |
[13] |
A. Güntherschulze, H. Betz, Zeitschrift für physik, 92(1934), pp. 367-374.
DOI URL |
[14] |
N. Cabrera, N.F. Mott, Rep. prog. phys., 12(1949), pp. 163-184.
DOI URL |
[15] |
F.P. Fehlner, N.F. Mott, Oxid. Met., 2(1970), pp. 59-99.
DOI URL |
[16] |
K.J. Vetter, Electrochim. Acta, 16(1971), pp. 1923-1937.
DOI URL |
[17] |
K.J. Vetter, F. Gorn, Electrochim. Acta, 18(1973), pp. 321-326.
DOI URL |
[18] |
K.E. Heusler, Corros. Sci., 31(1990), pp. 597-606.
DOI URL |
[19] |
R. Kirchheim, Electrochim. Acta, 32(1987), pp. 1619-1629.
DOI URL |
[20] |
R. Kirchheim Corros. Sci., 29(1989), pp. 183-190.
DOI URL |
[21] |
M. Bojinov, Electrochim. Acta, 46(2001), pp. 1339-1358.
DOI URL |
[22] |
M. Bojinov, G. Fabricius, T. Laitinen, T. Saario, Electrochim. Acta, 44(1999), pp. 4331-4343.
DOI URL |
[23] |
M. Bojinov, G. Fabricius, P. Kinnunen, T. Laitinen, K. Mäkelä, T. Saario, G. Sundholm, Electrochim. Acta, 45(2000), pp. 2791-2802.
DOI URL |
[24] |
L. Zhang, J. Electrochem. Soc., 145(1998), pp. 898-905.
DOI URL |
[25] |
D.D. Macdonald, Electrochim. Acta, 56(2011), pp. 1761-1772.
DOI URL |
[26] |
D.D. Macdonald, J. Electrochem. Soc., 153(2006), pp. B213-B224.
DOI URL |
[27] |
D.D. Macdonald, J. Electrochem. Soc., 139(1992), pp. 3434-3449.
DOI URL |
[28] |
H. Xu, D. Sun, H. Yu, Appl. Surf. Sci., 357(2015), pp. 204-213.
DOI URL |
[29] |
H. Xu, L. Wang, D. Sun, H. Yu, Appl. Surf. Sci., 351(2015), pp. 367-373.
DOI URL |
[30] |
G.T. Burstein, P.I. Marshall, Corros. Sci., 23(1983), pp. 125-137.
DOI URL |
[31] |
G.T. Burstein, R.D.K. Misra, Electrochim. Acta, 28(1983), pp. 363-369.
DOI URL |
[32] |
G.T. Burstein, R.D.K. Misra, Electrochim. Acta, 28(1983), pp. 825-831.
DOI URL |
[33] |
G.T. Burstein, G.W. Ashley, Corrosion, 40(1984), pp. 110-115.
DOI URL |
[34] |
G.T. Burstein, P.I. Marshall, Corros. Sci., 24(1984), pp. 449-462.
DOI URL |
[35] |
G.T. Burstein, J. Electrochem. Soc., 136(1989), pp. 1313-1319.
DOI URL |
[36] |
T.A. Adler, R.P. Walters, Corrosion, 49(1993), pp. 399-408.
DOI URL |
[37] |
E.J.W. Verwey, Physica, 2(1935), pp. 1059-1063.
DOI URL |
[38] |
P.I. Marshall, G.T. Burstein, Corros. Sci., 24(1984), pp. 463-478.
DOI URL |
[39] |
K. Oh, S. Ahn, K. Eom, H. Kwon, Corros. Sci., 100(2015), pp. 158-168.
DOI URL |
[40] |
H.S. Kwon, E.A. Cho, K.A. Yeom, Corrosion, 56(2000), pp. 32-40.
DOI URL |
[41] |
E.-A. Cho, C.-K. Kim, J.-S. Kim, H.-S. Kwon, Electrochim. Acta, 45(2000), pp. 1933-1942.
DOI URL |
[42] |
J. Wang, X. Li, J. Wang, E.-h. Han, Corros. Sci., 95(2015), pp. 125-132.
DOI URL |
[43] |
J. Wang, E.-H. Han, J. Wang, Electrochem. Commun., 60(2015), pp. 100-103.
DOI URL |
[44] |
T.R. Beck, Electrochim. Acta, 18(1973), pp. 815-827.
DOI URL |
[45] |
R.S. Lillard, G. Vasquez, D.F. Bahr, J. Electrochem. Soc., 158(2011), pp. C194-C201.
DOI URL |
[46] |
M. Avrami, J. Chem. Phys., 7(1939), pp. 1103-1112.
DOI URL |
[47] |
S. Ahn, D. Kim, H. Kwon, J. Electrochem. Soc., 153(2006), pp. B370-B374.
DOI URL |
[48] |
D.-J. Kim, H.-C. Kwon, H.P. Kim, Corros. Sci., 50(2008), pp. 1221-1227.
DOI URL |
[49] |
J. Huang, X. Wu, E.-H. Han, Corros. Sci., 52(2010), pp. 3444-3452.
DOI URL |
[50] |
H. Sun, X. Wu, E.-H. Han, Corros. Sci., 51(2009), pp. 2840-2847.
DOI URL |
[51] |
H. Sun, X. Wu, E.-H. Han, Corros. Sci., 51(2009), pp. 2565-2572.
DOI URL |
[52] |
D.D. Macdonald, Corrosion, 34(1978), pp. 75-84.
DOI URL |
[53] |
C. Boissy, C. Alemany-Dumont, B. Normand, Electrochem. Commun., 26(2013), pp. 10-12.
DOI URL |
[54] |
K. Park, S. Ahn, H. Kwon, Electrochim. Acta, 56(2011), pp. 1662-1669.
DOI URL |
[55] |
D.D. Macdonald, Pure Appl. Chem., 71(1999), pp. 951-978.
DOI URL |
[56] |
J. Yang, Y. Li, D.D. Macdonald, J. Nucl. Mater., 528(2020), pp. 151850-151866.
DOI URL |
[57] |
G.S. Was, S. Teysseyre, Z. Jiao, Corrosion, 62(2006), pp. 989-1005.
DOI URL |
[58] |
W. Kuang, M. Song, P. Wang, G.S. Was, Corros. Sci., 126(2017), pp. 227-237.
DOI URL |
[59] |
W. Kuang, G.S. Was, Corros. Sci., 163(2020), pp. 108243-108256.
DOI URL |
[60] |
W. Kuang, G.S. Was, Acta Mater., 182(2020), pp. 120-130.
DOI URL |
[61] |
B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang, D. Chen, Y.C. Zhang, K. Du, E.E. Oguzie, X.L. Ma, Nat. Commun., 9(2018), pp. 2559-2568.
DOI URL |
[62] |
J. Yang, Y. Li, A. Xu, B. Fekete, D.D. Macdonald, J. Nucl. Mater., 518(2019), pp. 305-315.
DOI URL |
[63] |
H. Feng, H. Li, X. Wu, Z. Jiang, S. Zhao, T. Zhang, D. Xu, S. Zhang, H. Zhu, B. Zhang, M. Yang, J. Mater. Sci. Technol, 34(2018), pp. 1781-1790.
DOI URL |
[64] |
M. Dumerval, S. Perrin, L. Marchetti, M. Sennour, F. Jomard, S. Vaubaillon, Y. Wouters, Corros. Sci., 107(2016), pp. 1-8.
DOI URL |
[65] |
H. Lefaix-Jeuland, L. Marchetti, S. Perrin, M. Pijolat, M. Sennour, R. Molins, Corros. Sci., 53(2011), pp. 3914-3922.
DOI URL |
[66] |
J. Wang, J. Wang, H. Ming, Z. Zhang, E.-H. Han, J. Mater. Sci. Technol., 34(2018), pp. 1419-1427.
DOI URL |
[67] | X. Zhong, X. Wu, E.-H. Han, J. Mater. Sci. Technol., 34(2018), pp. 561-569. |
[68] |
J. Wang, J. Wang, E.-H. Han, J. Mater. Sci. Technol., 32(2016), pp. 333-340.
DOI URL |
[69] |
C.-J. Park, Met. Mater. Int., 14(2008), pp. 71-75.
DOI URL |
[70] |
J.W. Park, V.S. Rao, H.S. Kwon, Corrosion, 60(2004), pp. 1099-1103.
DOI URL |
[71] |
S. Ahn, V. Shankar Rao, H. Kwon, U. Kim, Corros. Sci., 48(2006), pp. 1137-1153.
DOI URL |
[72] |
J.-B. Lee, Mater. Chem. Phys., 99(2006), pp. 224-234.
DOI URL |
[73] |
R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, Electrochim. Acta, 58(2011), pp. 264-275.
DOI URL |
[74] |
J. Lv, J. Mater. Sci. Technol., 34(2018), pp. 1685-1691.
DOI URL |
[75] |
J. Chen, A. Nurrochman, J.-D. Hong, T.S. Kim, C. Jang, Y. Yi, Nucl. Eng. Technol., 51(2019), pp. 479-489.
DOI URL |
[1] | Fangqiang Ning, Xiang Wang, Ying Yang, Jibo Tan, Ziyu Zhang, Dan Jia, Xinqiang Wu, En-Hou Han. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70(0): 136-144. |
[2] | Xuan Wu, Yuanyuan Liu, Yangting Sun, Nianwei Dai, Jin Li, Yiming Jiang. A discussion on evaluation criteria for crevice corrosion of various stainless steels [J]. J. Mater. Sci. Technol., 2021, 64(0): 29-37. |
[3] | Zhongdi Yu, Minghui Chen, Jinlong Wang, Fengjie Li, Shenglong Zhu, Fuhui Wang. Enamel coating for protection of the 316 stainless steel against tribo-corrosion in molten zinc alloy at 460 °C [J]. J. Mater. Sci. Technol., 2021, 65(0): 126-136. |
[4] | Ping Deng, Qunjia Peng, En-Hou Han, Wei Ke, Chen Sun. Proton irradiation assisted localized corrosion and stress corrosion cracking in 304 nuclear grade stainless steel in simulated primary PWR water [J]. J. Mater. Sci. Technol., 2021, 65(0): 61-71. |
[5] | Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Ke Yang, Fuhui Wang. Effect of TiN diffusion barrier on elements interdiffusion behavior of Ni/GH3535 system in LiF-NaF-KF molten salt at 700 ℃ [J]. J. Mater. Sci. Technol., 2020, 45(0): 125-132. |
[6] | Lucas-Granados Bianca, Sánchez-Tovar Rita, M. Fernández-Domene Ramón, María Estívalis-Martínez José, García-Antón José. How does anodization time affect morphological and photocatalytic properties of iron oxide nanostructures? [J]. J. Mater. Sci. Technol., 2020, 38(0): 159-169. |
[7] | Junlei Wang, Tiansui Zhang, Xinxin Zhang, Muhammed Asif, Lipei Jiang, Shuang Dong, Tingyue Gu, Hongfang Liu. Inhibition effects of benzalkonium chloride on Chlorella vulgaris induced corrosion of carbon steel [J]. J. Mater. Sci. Technol., 2020, 43(0): 14-20. |
[8] | Jun Gao, Jibo Tan, Ming Jiao, Xinqiang Wu, Lichen Tang, Yifeng Huang. Role of welding residual strain and ductility dip cracking on corrosion fatigue behavior of Alloy 52/52M dissimilar metal weld in borated and lithiated high-temperature water [J]. J. Mater. Sci. Technol., 2020, 42(0): 163-174. |
[9] | Jinlong Lv. Effect of grain size on mechanical property and corrosion resistance of the Ni-based alloy 690 [J]. J. Mater. Sci. Technol., 2018, 34(9): 1685-1691. |
[10] | Jiazhen Wang, Jianqiu Wang, Hongliang Ming, Zhiming Zhang, En-Hou Han. Effect of temperature on corrosion behavior of alloy 690 in high temperature hydrogenated water [J]. J. Mater. Sci. Technol., 2018, 34(8): 1419-1427. |
[11] | Xiangyu Zhong, Xinqiang Wu, En-Hou Han. Characteristics of Oxidation and Oxygen Penetration of Alloy 690 in 600 °C Aerated Supercritical Water [J]. J. Mater. Sci. Technol., 2018, 34(3): 561-569. |
[12] | Yingchao Li, Dake Xu, Changfeng Chen, Xiaogang Li, Ru Jia, Dawei Zhang, Wolfgang Sand, Fuhui Wang, Tingyue Gu. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34(10): 1713-1718. |
[13] | Wan Chaopin, Zhang Rongxia, Wang Shulan, Liu Xuan. Molten Salt Electrolytic Fabrication of TiC-CDC and Its Applications for Supercapacitor [J]. J. Mater. Sci. Technol., 2017, 33(8): 788-792. |
[14] | Huang Dong, Zhang Mingyu, Huang Qizhong, Wang Liping, Tong Kai. Mechanical Property, Oxidation and Ablation Resistance of C/C-ZrB2-ZrC-SiC Composite Fabricated by Polymer Infiltration and Pyrolysis with Preform of Cf/ZrB2 [J]. J. Mater. Sci. Technol., 2017, 33(5): 481-486. |
[15] | Ghasem Hosseini Mir,Shahryari Elham. Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor [J]. J. Mater. Sci. Technol., 2016, 32(8): 763-773. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||