J. Mater. Sci. Technol. ›› 2021, Vol. 68: 216-226.DOI: 10.1016/j.jmst.2020.06.047
• Research Article • Previous Articles Next Articles
Jinming Hua,b, Shengyi Yanga,b,c,*(), Zhenheng Zhanga,b, Hailong Lia,b, Chandrasekar Perumal Veeramalaia,b, Muhammad Sulamana,b,d, Muhammad Imran Saleema,b, Yi Tangd, Yurong Jiangd, Libin Tangc, Bingsuo Zoue,**()
Received:
2020-04-26
Revised:
2020-05-30
Accepted:
2020-06-22
Published:
2021-03-30
Online:
2021-05-01
Contact:
Shengyi Yang,Bingsuo Zou
About author:
*Beijing Key Laboratory of Nanophotonics and UltrafineOptoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing,100081, China. E-mail addresses: syyang@bit.edu.cn (S. Yang),Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures[J]. J. Mater. Sci. Technol., 2021, 68: 216-226.
Fig. 1. Schematic diagrams of (a) processing procedures and (b) device configuration for flexible and broadband PD based on CsPbBr3/PbSe heterostructures.
Fig. 3. Structure and elemental composition of the QD films. (a) XRD pattern of PbSe QDs; (b) XRD pattern of CsPbBr3 QDs; (c) EDS spectrum of PbSe QD film; (d) EDS spectrum of CsPbBr3 QD film.
Fig. 4. Optical properties and morphologies of the synthesized QDs. (a) Absorption spectrum of PbSe QDs. (b) Absorption and PL spectra of CsPbBr3 QDs. (c) Absorption spectra of CsPbBr3/PbSe, pristine PbSe and CsPbBr3 films. (d) TEM image of PbSe QDs. The inset shows the histogram for their average diameter. (e) TEM image of CsPbBr3 QDs. The inset depicts the histogram for their average diameter.
Fig. 5. Comparsion of optoelectronic properties for different PDs. (a) Responsivity and (b) detectivity for different PDs under different wavelength illumination. (c) I-t curves of different PDs under 365 nm illumination. All the measurements were performed at 5 V under 62.8 μW cm-2 illumination.
Active materials | Responsivity (A/W) | Specific detectivity (Jones) | Rising/decaying time (ms) |
---|---|---|---|
CsPbBr3 | 6.98 | 8.710 × 1012 | 1.54/1.63 |
PbSe | 3.56 | 4.432 × 1012 | 558/565 |
CsPbBr3/PbSe | 6.26 | 7.794 × 1012 | 0.5/0.78 |
Table 1 Device performance of PDs with different active materials (@62.8 μW cm-2 365 nm illumination at 5 V).
Active materials | Responsivity (A/W) | Specific detectivity (Jones) | Rising/decaying time (ms) |
---|---|---|---|
CsPbBr3 | 6.98 | 8.710 × 1012 | 1.54/1.63 |
PbSe | 3.56 | 4.432 × 1012 | 558/565 |
CsPbBr3/PbSe | 6.26 | 7.794 × 1012 | 0.5/0.78 |
Fig. 6. (a) Steady PL spectra of the pristine CsPbBr3 and CsPbBr3/PbSe films; (b) time-resolved PL decay spectra of the pristine CsPbBr3 and CsPbBr3/PbSe films at λ = 520 nm; (c) band diagram of the CsPbBr3/PbSe heterostructures before and after contacting.
Fig. 7. Typical I-V curves of the CsPbBr3/PbSe heterostructures based PD. I-V characteristics of the PD under 365 nm (a), 520 nm (c), 980 nm (e) and 1550 nm (g) illumination with different light intensities. Iph and R of the PD under 365 nm (b), 520 nm (d), 980 nm (f) and 1550 nm (h) illumination as the function of light intensity.
Active materials | Detection wavelength range (nm) | R (A/W) | D* (Jones) | Rising/decaying time (ms) | Light intensity (mW/cm2)/wavelength (nm)/bias (V)/substrate | Refs. |
---|---|---|---|---|---|---|
PbS/ZnO NWs | 300-1000 | 0.051 | 3.4 × 108 | 9000/2000 | 7.02/300/10/rigid | [ |
PbS/P3HT NWs | 365-850 | — | 2.1 × 1011 | 160/120 | 0.018/625/—/rigid | [ |
PbS/ZnO NPs | 375-1064 | 4.54 | 3.98 × 1012 | 1010/1350 | 0.0112/375/5/flexible | [ |
Bilayer PbS | white light | ∼0.3 | 1.71 × 1012 | 3.63/29.56 | 0.0106/580/10/rigid | [ |
Bilayer PbS | 500-910 | 444 | 4.52 × 1013 | 25.5/25.6 | 0.00019/500/1/rigid | [ |
PbSe/TiO2/graphene | 350-1064 | 0.506 | 3 × 1013 | 0.75/0.75 | 0.0425/350/1/rigid | [ |
PNDIT-F3N/Bilayer PbSe | 350-2500 | >1 | >1012 | 0.14/0.41 | 0.1/visible/1/rigid | [ |
PbSe/CsPbBr3 CQDs | 365-1550 | 7.17 | 8.97 × 1012 | 0.5/0.78 | 0.025/365/5/flexible | This work |
Table 2 Performance of broadband PDs based on PbS or PbSe CQDs.
Active materials | Detection wavelength range (nm) | R (A/W) | D* (Jones) | Rising/decaying time (ms) | Light intensity (mW/cm2)/wavelength (nm)/bias (V)/substrate | Refs. |
---|---|---|---|---|---|---|
PbS/ZnO NWs | 300-1000 | 0.051 | 3.4 × 108 | 9000/2000 | 7.02/300/10/rigid | [ |
PbS/P3HT NWs | 365-850 | — | 2.1 × 1011 | 160/120 | 0.018/625/—/rigid | [ |
PbS/ZnO NPs | 375-1064 | 4.54 | 3.98 × 1012 | 1010/1350 | 0.0112/375/5/flexible | [ |
Bilayer PbS | white light | ∼0.3 | 1.71 × 1012 | 3.63/29.56 | 0.0106/580/10/rigid | [ |
Bilayer PbS | 500-910 | 444 | 4.52 × 1013 | 25.5/25.6 | 0.00019/500/1/rigid | [ |
PbSe/TiO2/graphene | 350-1064 | 0.506 | 3 × 1013 | 0.75/0.75 | 0.0425/350/1/rigid | [ |
PNDIT-F3N/Bilayer PbSe | 350-2500 | >1 | >1012 | 0.14/0.41 | 0.1/visible/1/rigid | [ |
PbSe/CsPbBr3 CQDs | 365-1550 | 7.17 | 8.97 × 1012 | 0.5/0.78 | 0.025/365/5/flexible | This work |
Fig. 9. (a) The currents of the flexible device in various radii under different wavelength illumination; (b) I-t curves of the device with different bending-recovering cycles under 365 nm illumination; (c) Photoresponse of the device under 365 nm illumination before and after storage in ambient air for 4 weeks. All the measurements were performed at 5 V and the intensity of the incident light was maintained at 62.8 μW/cm2.
[1] |
W. Wang, F. Zhang, M. Du, L. Li, M. Zhang, K. Wang, Y. Wang, B. Hu, Y. Fang, J. Huang, Nano Lett., 17 (2017), pp. 1995-2002.
DOI URL |
[2] |
X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie, Adv. Funct. Mater., 24 (2014), pp. 7373-7380.
DOI URL |
[3] |
T. Gao, Q. Zhang, J. Chen, X. Xiong, T. Zhai, Adv. Opt. Mater., 5 (2017), 1700206.
DOI URL |
[4] |
W. Wang, F. Zhang, H. Bai, L. Li, M. Gao, M. Zhang, X. Zhan, Nanoscale, 8 (2016), pp. 5578-5586.
DOI URL |
[5] |
D. Han, M. Imran, M. Zhang, S. Chang, X.G. Wu, X. Zhang, J. Tang, M. Wang, S. Ali, X. Li, G. Yu, J. Han, L. Wang, B. Zou, H. Zhong, ACS Nano, 12 (2018), pp. 8808-8816.
DOI URL |
[6] |
Y. Shynkarenko, M.I. Bodnarchuk, C. Bernasconi, Y. Berezovska, V. Verteletskyi, S.T. Ochsenbein, M.V. Kovalenko, ACS Energy Lett., 4 (2019), pp. 2703-2711.
DOI PMID |
[7] |
B. Sun, O. Ouellette, F.P. García de Arquer, O. Voznyy, Y. Kim, M. Wei, A.H. Proppe, M.I. Saidaminov, J. Xu, M. Liu, P. Li, J.Z. Fan, J.W. Jo, H. Tan, F. Tan, S. Hoogland, Z.H. Lu, S.O. Kelley, E.H. Sargent, Nat. Commun., 9 (2018), p. 4003.
DOI URL |
[8] |
M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, O. Voznyy, E.H. Sargent, Nat. Energy, 3 (2018), pp. 648-654.
DOI URL |
[9] |
K. Shen, X. Li, H. Xu, M. Wang, X. Dai, J. Guo, T. Zhang, S. Li, G. Zou, K.L. Choy, I.P. Parkin, Z. Guo, H. Liu, J. Wu, J. Mater. Chem. A, 7 (2019), pp. 6134-6142.
DOI PMID |
[10] | C. Bi, S.V. Kershaw, A.L. Rogach, J. Tian, Adv. Funct. Mater., 29 (2019), 1902446. |
[11] |
Y. Wang, Z. Liu, N. Huo, F. Li, M. Gu, X. Ling, Y. Zhang, K. Lu, L. Han, H. Fang, A.G. Shulga, Y. Xue, S. Zhou, F. Yang, X. Tang, J. Zheng, M.A. Loi, G. Konstantatos, W. Ma, Nat. Commun., 10 (2019), p. 5136.
DOI URL |
[12] |
R. Saran, R.J. Curry, Nat. Photonics, 10 (2016), pp. 81-92.
DOI URL |
[13] |
X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, Z. Fan, Nat. Commun., 5 (2014), p. 4007.
DOI PMID |
[14] |
M.A. Hines, G.D. Scholes, Adv. Mater., 15 (2003), pp. 1844-1849.
DOI URL |
[15] |
Z. Yang, M. Wang, Y. Shi, X. Song, Z. Lin, Z. Ren, J. Bai, J. Mater. Chem., 22 (2012), pp. 21009-21016.
DOI URL |
[16] | W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin, Chem. Mater., 16 (2004), pp. 3318-3322. |
[17] |
C. Fu, H. Wang, T. Song, L. Zhang, W. Li, B. He, M. Sulaman, S. Yang, B. Zou, Nanotechnology, 27 (2016), 065201.
DOI URL |
[18] |
Y. Tong, E. Bladt, M.F. Ayguler, A. Manzi, K.Z. Milowska, V.A. Hintermayr, P. Docampo, S. Bals, A.S. Urban, L. Polavarapu, J. Feldmann, Angew. Chem. Int. Ed., 55 (2016), pp. 13887-13892.
DOI URL |
[19] |
J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, H. Zeng, Adv. Mater., 29 (2017), 1603885.
DOI URL |
[20] |
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Science, 354 (2016), pp. 92-95.
DOI URL |
[21] |
R.W. Crisp, D.M. Kroupa, A.R. Marshall, E.M. Miller, J. Zhang, M.C. Beard, J.M. Luther, Sci. Rep., 5 (2015), p. 9945.
DOI URL |
[22] |
J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Nat. Mater., 10 (2011), pp. 765-771.
DOI URL |
[23] |
A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L.R. Rollny, G.H. Carey, A. Fischer, K.W. Kemp, I.J. Kramer, Z. Ning, A.J. Labelle, K.W. Chou, A. Amassian, E.H. Sargent, Nat. Nanotechnol., 7 (2012), pp. 577-582.
DOI URL |
[24] |
X. Lan, O. Voznyy, A. Kiani, F.P.G. de Arquer, A.S. Abbas, G.H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, E.H. Sargent, Adv. Mater., 28 (2016), pp. 299-304.
DOI URL |
[25] |
H. Wang, Y. Wang, B. He, W. Li, M. Sulaman, J. Xu, S. Yang, Y. Tang, B. Zou, ACS Appl. Mater. Interfaces, 8 (2016), pp. 18526-18533.
DOI URL |
[26] | E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski, L.M. Wheeler, P. Schulz, L.Y. Lin, M.C. Beard, J.M. Luther, Sci. Adv., 3 (2017), p. eaao4204. |
[27] |
S.-M. Lee, W. Li, P. Dhar, S. Malyk, Y. Wang, W. Lee, A. Benderskii, J. Yoon, Adv. Energy Mater., 5 (2015), 1500761.
DOI URL |
[28] |
X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, Adv. Funct. Mater., 26 (2016), pp. 2435-2445.
DOI URL |
[29] | D. Yang, X. Li, W. Zhou, S. Zhang, C. Meng, Y. Wu, Y. Wang, H. Zeng, Adv. Mater., 31 (2019), 1900767. |
[30] |
Y. Tong, E.P. Yao, A. Manzi, E. Bladt, K. Wang, M. Döblinger, S. Bals, P. Müller-Buschbaum, A.S. Urban, L. Polavarapu, J. Feldmann, Adv. Mater., 30 (2018), 1801117.
DOI URL |
[31] |
Y.S. Rim, S.H. Bae, H. Chen, N. De Marco, Y. Yang, Adv. Mater., 28 (2016), pp. 4415-4440.
DOI URL |
[32] |
Y. Lee, J. Kwon, E. Hwang, C.H. Ra, W.J. Yoo, J.H. Ahn, J.H. Park, J.H. Cho, Adv. Mater., 27 (2015), pp. 41-46.
DOI URL |
[33] |
J. Hu, Y. Shi, Z. Zhang, R. Zhi, H. Li, Y. Tang, S. Yang, B. Zou, J. Mater. Chem. C, 7 (2019), pp. 14938-14948.
DOI URL |
[34] |
J. Wu, Y. Lu, S. Feng, Z. Wu, S. Lin, Z. Hao, T. Yao, X. Li, H. Zhu, S. Lin, Adv. Funct. Mater., 28 (2018), 1804712.
DOI URL |
[35] |
Z. Li, H. Wang, D. Yang, L. Zhang, Y. Wang, T. Song, C. Fu, H. Zhang, S. Yang, B. Zou, J. Mater. Sci., 50 (2015), pp. 840-847.
DOI URL |
[36] |
X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, Y. Wang, M. Wu, A. Xie, H. Zeng, ACS Appl. Mater. Interfaces, 10 (2018), pp. 2801-2809.
DOI URL |
[37] |
C.F. Cai, B.P. Zhang, R.F. Li, H.Z. Wu, T.N. Xu, W.H. Zhang, J.F. Zhu, Europhys. Lett., 99 (2012), p. 37010.
DOI URL |
[38] |
C. Fan, X. Xu, K. Yang, F. Jiang, S. Wang, Q. Zhang, Adv. Mater., 30 (2018), 1804707.
DOI URL |
[39] |
J. Endres, M. Kulbak, L.F. Zhao, B.P. Rand, D. Cahen, G. Hodes, A. Kahn, J. Appl. Phys., 121 (2017), 035304.
DOI URL |
[40] |
Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A.R. Kirmani, J.-P. Sun, J. Minor, K.W. Kemp, H. Dong, L. Rollny, A. Labelle, G. Carey, B. Sutherland, I. Hill, A. Amassian, H. Liu, J. Tang, O.M. Bakr, E.H. Sargent, Nat. Mater., 13 (2014), pp. 822-828.
DOI URL |
[41] |
M. Massicotte, P. Schmidt, F. Vialla, K. Watanabe, T. Taniguchi, K.J. Tielrooij, F.H.L. Koppens, Nat. Commun., 7 (2016), p. 12174.
DOI PMID |
[42] | Q. Wang, Y. Wen, K. Cai, R. Cheng, L. Yin, Y. Zhang, J. Li, Z. Wang, F. Wang, F. Wang, T.A. Shifa, C. Jiang, H. Yang, J. He, Sci. Adv., 7 (2018),p. eaap7916. |
[43] |
M. Peng, Y. Wang, Q. Shen, X. Xie, H. Zheng, W. Ma, Z. Wen, X. Sun, Sci. China Mater., 62 (2019), pp. 225-235.
DOI URL |
[44] |
H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater., 14 (2002), pp. 158-160.
DOI URL |
[45] |
F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zólyomi, N. Drummond, V.I. Fal’ko, K. Tanigaki, ACS Nano, 8 (2014), pp. 752-760.
DOI URL |
[46] | Z. Zheng, L. Gan, J. Zhang, F. Zhuge, T. Zhai, Adv. Sci., 4 (2016), 1600316. |
[47] |
, J. Yoo, S. Jeong, S. Kim, J.H. Je., Adv. Mater., 27 (2015), pp. 1712-1717.
DOI URL |
[48] |
Z. Ren, J. Sun, H. Li, P. Mao, Y. Wei, X. Zhong, J. Hu, S. Yang, J. Wang, Adv. Mater., 29 (2017), 1702055.
DOI URL |
[49] |
J. Xu, H. Wang, S. Yang, G. Ni, B. Zou, J. Alloys Compd., 764 (2018), pp. 446-451.
DOI URL |
[50] |
K.K. Manga, J. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, K.P. Loh, Adv. Mater., 24 (2012), pp. 1697-1702.
DOI URL |
[51] |
T. Zhu, L. Zheng, X. Yao, L. Liu, F. Huang, Y. Cao, X. Gong, ACS Appl. Mater. Interfaces, 11 (2019), pp. 9205-9212.
DOI URL |
[52] |
T.Y. Qu, Y. Sun, M.L. Chen, Z.B. Liu, Q.B. Zhu, B.W. Wang, T.Y. Zhao, C. Liu, J. Tan, S. Qiu, Q.W. Li, Z. Han, W. Wang, H.M. Cheng, D.M. Sun, Adv. Mater., 32 (2020), 1907288.
DOI URL |
[1] | InSu Jin, Minwoo Park, Jae Woong Jung. Reduced interface energy loss in non-fullerene organic solar cells using room temperature-synthesized SnO2 quantum dots [J]. J. Mater. Sci. Technol., 2020, 52(0): 12-19. |
[2] | Guoquan Suo, Dan Li, Lei Feng, Xiaojiang Hou, Xiaohui Ye, Li Zhang, Qiyao Yu, Yanling Yang, Wei (Alex) Wang. Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 167-172. |
[3] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[4] | Youliang Cheng, Mengsha Bai, Jian Su, Changqing Fang, Hang Li, Jing Chen, Jieming Jiao. Synthesis of fluorescent carbon quantum dots from aqua mesophase pitch and their photocatalytic degradation activity of organic dyes [J]. J. Mater. Sci. Technol., 2019, 35(8): 1515-1522. |
[5] | Yihe Jia, Haicheng Wang, Long Xiang, Xiaoguang Liu, Wei Wei, Ning Ma, Dongbai Sun. Tunable emission properties of core-shell ZnCuInS-ZnS quantum dots with enhanced fluorescence intensity [J]. J. Mater. Sci. Technol., 2018, 34(6): 942-948. |
[6] | Zhu Xiangxiang, Liu Zeke, Shi Guozheng, Gu Jinan, Wang Weiwei, Ma Wanli. Photovoltaic devices employing ternary PbSxTe1-x nanocrystals [J]. J. Mater. Sci. Technol., 2017, 33(5): 418-423. |
[7] | Geeta Rani, P.D. Sahare. Structural and Spectroscopic Characterizations of ZnO Quantum Dots Annealed at Different Temperatures [J]. J. Mater. Sci. Technol., 2013, 29(11): 1035-1039. |
[8] | Pengfei Li, Aihua Yao, Tian Zhou, Deping Wang. Fabrication of N-acetyl-L-cysteine-capped CdSe-polyelectrolytes @ Hydroxyapatite Composite Microspheres for Fluorescence Detection of Cu2+ Ions [J]. J. Mater. Sci. Technol., 2013, 29(11): 1104-1110. |
[9] | Fedir Ivashchyshyn, Ivan Grygorchak, Olena Sudakova, Igor Bordun, Miroslav Micov. Influence of Magnetic Field and Lighting during the Creation Process of Nanohybrid Semiconductor-Nematic Structures on Their Impedance and Photo Response [J]. J Mater Sci Technol, 2011, 27(11): 973-978. |
[10] | M. Thambidurai N. Murugan N. Muthukumarasamy S. Agilan S. Vasantha R. Balasundaraprabhu. Influence of the Cd/S Molar Ratio on the Optical and Structural Properties of Nanocrystalline CdS Thin Films [J]. J Mater Sci Technol, 2010, 26(3): 193-199. |
[11] | Hui She,Biao Wang. Analysis of the Vertical and Lateral Interactions in a Multisheet Array of InAs/GaAs Quantum Dots [J]. J Mater Sci Technol, 2009, 25(05): 677-680. |
[12] | Guozhen SHEN, Di CHEN, Yoshio B, O, Dmitri GOLBERG. One-Dimensional (1-D) Nanoscale Heterostructures [J]. J Mater Sci Technol, 2008, 24(04): 541-549. |
[13] | Xiaosheng FANG, Ujjal K.Gautamy, Yoshio B, O, Dmitri GOLBERG. One-dimensional ZnS-based Hetero-, Core/shell and Hierarchical Nanostructures [J]. J Mater Sci Technol, 2008, 24(04): 520-528. |
[14] | Jin ZOU. TEM Characterization of Nanostructure and Chemistry of Semiconductor Quantum Structures [J]. J Mater Sci Technol, 2005, 21(Supl.1): 111-113. |
[15] | Zhongyuan YU, Yongqiang WEI. Explanation of Unusual Photoluminescence Behavior from InAs Quantum Dots with InAlAs Capping [J]. J Mater Sci Technol, 2005, 21(04): 559-562. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||