J. Mater. Sci. Technol. ›› 2021, Vol. 62: 234-248.DOI: 10.1016/j.jmst.2020.05.058
• Research Article • Previous Articles Next Articles
Baoxian Sua, Liangshun Luoa,*(), Binbin Wanga, Yanqing Sua,*(
), Liang Wanga, Robert O. Ritchieb, Enyu Guoc, Ting Lid, Huimin Yange, Haiguang Huangf,g, Jingjie Guoa, Hengzhi Fua
Received:
2020-04-09
Revised:
2020-05-23
Accepted:
2020-05-24
Published:
2021-01-30
Online:
2021-02-01
Contact:
Liangshun Luo,Yanqing Su
About author:
suyq@hit.edu.cn (Y. Su).Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy[J]. J. Mater. Sci. Technol., 2021, 62: 234-248.
Fig. 2. XRD results of Ti80 alloy annealed at temperatures between 850 and 1000 °C: (a) XRD patterns, (b) volume fraction of β phase, vs. annealing temperature.
Fig. 3. Microstructure in Ti80 alloy annealed at different temperatures, as shown by OM (a to d) and SEM (e to h) images. Microstructure after annealing at (a) and (e) 850 °C, (b) and (f) 900 °C, (c) and (g) 950 °C, and (d) and (h) 1000 °C. (i) The mean thickness d of α phase, i.e., the average value of intersecting diagonals (ASTM E112-12), varies with annealing temperature. (j) Typical HAADF image and STEM elemental maps of Ti80 alloy annealed at 1000 °C.
Specimen | Relative concentration (wt.%) | |||||
---|---|---|---|---|---|---|
Phase | Ti | Al | Nb | Zr | Mo | |
850 °C | α(hcp) | Balance | 6.78 ± 0.19 | 2.75 ± 0.20 | 2.32 ± 0.11 | 0.84 ± 0.22 |
β(bcc) | Balance | 4.31 ± 0.08 | 7.35 ± 0.21 | 2.85 ± 0.36 | 4.76 ± 0.36 | |
900 °C | α(hcp) | Balance | 6.68 ± 0.16 | 3.04 ± 0.07 | 2.08 ± 0.04 | 1.05 ± 0.12 |
β(bcc) | Balance | 5.00 ± 0.12 | 6.34 ± 0.22 | 2.42 ± 0.09 | 3.48 ± 0.32 | |
950 °C | α(hcp) | Balance | 6.46 ± 0.09 | 2.78 ± 0.03 | 1.90 ± 0.07 | 1.31 ± 0.12 |
β(bcc) | Balance | 5.55 ± 0.08 | 3.96 ± 0.28 | 2.17 ± 0.03 | 2.23 ± 0.26 | |
1000 °C | α(hcp) | Balance | 6.24 ± 0.02 | 2.97 ± 0.05 | 1.96 ± 0.05 | 1.27 ± 0.06 |
β(bcc) | Balance | 5.85 ± 0.06 | 3.57 ± 0.13 | 2.11 ± 0.02 | 1.48 ± 0.06 |
Table 1 Concentration of alloying elements in α and β phases of annealed Ti80 alloys.
Specimen | Relative concentration (wt.%) | |||||
---|---|---|---|---|---|---|
Phase | Ti | Al | Nb | Zr | Mo | |
850 °C | α(hcp) | Balance | 6.78 ± 0.19 | 2.75 ± 0.20 | 2.32 ± 0.11 | 0.84 ± 0.22 |
β(bcc) | Balance | 4.31 ± 0.08 | 7.35 ± 0.21 | 2.85 ± 0.36 | 4.76 ± 0.36 | |
900 °C | α(hcp) | Balance | 6.68 ± 0.16 | 3.04 ± 0.07 | 2.08 ± 0.04 | 1.05 ± 0.12 |
β(bcc) | Balance | 5.00 ± 0.12 | 6.34 ± 0.22 | 2.42 ± 0.09 | 3.48 ± 0.32 | |
950 °C | α(hcp) | Balance | 6.46 ± 0.09 | 2.78 ± 0.03 | 1.90 ± 0.07 | 1.31 ± 0.12 |
β(bcc) | Balance | 5.55 ± 0.08 | 3.96 ± 0.28 | 2.17 ± 0.03 | 2.23 ± 0.26 | |
1000 °C | α(hcp) | Balance | 6.24 ± 0.02 | 2.97 ± 0.05 | 1.96 ± 0.05 | 1.27 ± 0.06 |
β(bcc) | Balance | 5.85 ± 0.06 | 3.57 ± 0.13 | 2.11 ± 0.02 | 1.48 ± 0.06 |
Annealing temperature (°C) | In 3.5 wt.% NaCl solution | In 5 M HCl solution | |||||
---|---|---|---|---|---|---|---|
Ecorr (V vs. SCE) | icorr (μA cm-2) | Ecorr (V vs. SCE) | icorr (μA cm-2) | βc (mV·decade-1) | Corrosion rate (mm·year-1) | ||
Obtained from icorr | Obtained from weight loss | ||||||
850 | - 0.345 ± 0.011 | 0.937 ± 0.028 | - 0.605 ± 0.013 | 162.51 ± 2.86 | -131 ± 7 | 1.89 ± 0.04 | 1.91 ± 0.21 |
900 | - 0.303 ± 0.009 | 0.728 ± 0.022 | - 0.574 ± 0.005 | 146.13 ± 2.05 | -153 ± 5 | 1.70 ± 0.02 | 1.64 ± 0.05 |
950 | - 0.265 ± 0.015 | 0.591 ± 0.014 | - 0.545 ± 0.008 | 131.07 ± 1.13 | -152 ± 4 | 1.52 ± 0.02 | 1.54 ± 0.01 |
1000 | - 0.223 ± 0.018 | 0.461 ± 0.031 | - 0.484 ± 0.016 | 118.32 ± 0.85 | -154 ± 2 | 1.37 ± 0.01 | 1.42 ± 0.02 |
Table 2 Parameters deduced from potentiodynamic polarization curves.
Annealing temperature (°C) | In 3.5 wt.% NaCl solution | In 5 M HCl solution | |||||
---|---|---|---|---|---|---|---|
Ecorr (V vs. SCE) | icorr (μA cm-2) | Ecorr (V vs. SCE) | icorr (μA cm-2) | βc (mV·decade-1) | Corrosion rate (mm·year-1) | ||
Obtained from icorr | Obtained from weight loss | ||||||
850 | - 0.345 ± 0.011 | 0.937 ± 0.028 | - 0.605 ± 0.013 | 162.51 ± 2.86 | -131 ± 7 | 1.89 ± 0.04 | 1.91 ± 0.21 |
900 | - 0.303 ± 0.009 | 0.728 ± 0.022 | - 0.574 ± 0.005 | 146.13 ± 2.05 | -153 ± 5 | 1.70 ± 0.02 | 1.64 ± 0.05 |
950 | - 0.265 ± 0.015 | 0.591 ± 0.014 | - 0.545 ± 0.008 | 131.07 ± 1.13 | -152 ± 4 | 1.52 ± 0.02 | 1.54 ± 0.01 |
1000 | - 0.223 ± 0.018 | 0.461 ± 0.031 | - 0.484 ± 0.016 | 118.32 ± 0.85 | -154 ± 2 | 1.37 ± 0.01 | 1.42 ± 0.02 |
Fig. 6. The electrochemical parameters of annealed Ti80 alloys vary with annealing temperature: (a) corrosion current density and (b) corrosion potential.
Fig. 7. Nyquist plots of annealed Ti80 alloys after 2.5 h immersion in (a) 3.5 wt.% NaCl solution, and (c) 5 M HCl solution. The corresponding Bode plots after 2.5 h immersion in (b) 3.5 wt% NaCl solution, and (d) 5 M HCl solution. The solid curves are simulated results obtained by ZSimpWin.
Fig. 8. The equivalent circuits used to fit the measured impedance data. (a) Equivalent circuit with one time constant, (b) equivalent circuit with two time constants. Variations of polarization resistance as a function of annealing temperature, in (c) 3.5 wt.% NaCl solution, and (d) 5 M HCl solution.
Annealing Temperature (°C) | Rs (Ω cm2) | CPEf (μS·sn cm-2) | nf | Rf (106 Ω cm2) | χ2(10 -3) | λ2 | Cf (μF cm- 2) | d (nm) |
---|---|---|---|---|---|---|---|---|
850 | 10.12 | 33.38 | 0.9294 | 1.691 | 1.316 | 0.036 | 45.34 | 1.27 ± 0.09 |
Error% | 0.7577 | 0.6147 | 0.1447 | 9.144 | ||||
900 | 7.7 | 29.31 | 0.9458 | 1.716 | 1.389 | 0.037 | 36.69 | 1.57 ± 0.11 |
Error% | 0.7987 | 0.6285 | 0.1399 | 8.044 | ||||
950 | 9.187 | 24.86 | 0.9512 | 1.973 | 0.715 | 0.027 | 30.36 | 1.90 ± 0.07 |
Error% | 0.5676 | 0.4505 | 0.1002 | 5.553 | ||||
1000 Error% | 11.79 0.5774 | 22.87 0.4562 | 0.9502 0.1041 | 2.181 6.011 | 0.725 | 0.027 | 28.07 | 2.05 ± 0.05 |
Table 3 Equivalent circuit parameters for annealed Ti80 alloys after 2.5 h immersion in 3.5 wt.% NaCl solution: Rs solution resistance, CPEf constant phase element, nf the exponent of CPEf, Rf oxide film resistance. The Chi-square parameter (χ2) and sums of squares (λ2) obtained for each annealed Ti80 alloy. Besides, the calculated oxide film capacitance Cf and oxide film thickness d are listed.
Annealing Temperature (°C) | Rs (Ω cm2) | CPEf (μS·sn cm-2) | nf | Rf (106 Ω cm2) | χ2(10 -3) | λ2 | Cf (μF cm- 2) | d (nm) |
---|---|---|---|---|---|---|---|---|
850 | 10.12 | 33.38 | 0.9294 | 1.691 | 1.316 | 0.036 | 45.34 | 1.27 ± 0.09 |
Error% | 0.7577 | 0.6147 | 0.1447 | 9.144 | ||||
900 | 7.7 | 29.31 | 0.9458 | 1.716 | 1.389 | 0.037 | 36.69 | 1.57 ± 0.11 |
Error% | 0.7987 | 0.6285 | 0.1399 | 8.044 | ||||
950 | 9.187 | 24.86 | 0.9512 | 1.973 | 0.715 | 0.027 | 30.36 | 1.90 ± 0.07 |
Error% | 0.5676 | 0.4505 | 0.1002 | 5.553 | ||||
1000 Error% | 11.79 0.5774 | 22.87 0.4562 | 0.9502 0.1041 | 2.181 6.011 | 0.725 | 0.027 | 28.07 | 2.05 ± 0.05 |
Annealing Temperature (°C) | Rs (Ω cm2) | CPEdl (10-5 S·sn cm-2) | ndl | Rct (Ω cm2) | CPEf (10-3 S·sn cm-2) | nf | Rf (Ω cm2) | χ2 (10-3) | λ2 | Cdl (10-5 F cm-2) | Cf (10-3F cm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
850 | 6.978 | 35.21 | 0.933 | 291.8 | 76.99 | 1 | 158.1 | 0.277 | 0.017 | 22.83 | 76.99 |
Error% | 0.2951 | 1.017 | 0.2219 | 0.5178 | 8.462 | 3.485 | 7.152 | ||||
900 | 7.138 | 50.06 | 0.9422 | 305 | 66.18 | 1 | 170 | 0.204 | 0.014 | 35.38 | 66.18 |
Error% | 0.2436 | 0.8191 | 0.1924 | 0.498 | 7.124 | 2.907 | 5.659 | ||||
950 | 6.203 | 47.71 | 0.9414 | 320.5 | 62.9 | 0.9989 | 188.3 | 0.285 | 0.017 | 33.16 | 63.07 |
Error% | 0.2917 | 0.9404 | 0.216 | 0.579 | 8.196 | 3.351 | 6.738 | ||||
1000 | 10.43 | 25.86 | 0.9355 | 429.8 | 79.77 | 1 | 220.7 | 0.103 | 0.01 | 17.17 | 79.77 |
Error% | 0.1781 | 0.6062 | 0.1347 | 0.3081 | 6.865 | 2.755 | 7.078 |
Table 4 Equivalent circuit parameters for annealed Ti80 alloys after 2.5 h immersion in 5 M HCl solution: Rs solution resistance, CPEdl and CPEf constant phase elements, ndl and nf are the exponent of CPEdl and CPEf, respectively, Rct charge transfer resistance, Rf resistance of the corrosion product. The Chi-square parameter (χ2) and sums of squares (λ2) obtained for each annealed Ti80 alloy. Moreover, the calculated electrical double layer capacitance Cdl and corrosion product film capacitance Cf are listed.
Annealing Temperature (°C) | Rs (Ω cm2) | CPEdl (10-5 S·sn cm-2) | ndl | Rct (Ω cm2) | CPEf (10-3 S·sn cm-2) | nf | Rf (Ω cm2) | χ2 (10-3) | λ2 | Cdl (10-5 F cm-2) | Cf (10-3F cm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
850 | 6.978 | 35.21 | 0.933 | 291.8 | 76.99 | 1 | 158.1 | 0.277 | 0.017 | 22.83 | 76.99 |
Error% | 0.2951 | 1.017 | 0.2219 | 0.5178 | 8.462 | 3.485 | 7.152 | ||||
900 | 7.138 | 50.06 | 0.9422 | 305 | 66.18 | 1 | 170 | 0.204 | 0.014 | 35.38 | 66.18 |
Error% | 0.2436 | 0.8191 | 0.1924 | 0.498 | 7.124 | 2.907 | 5.659 | ||||
950 | 6.203 | 47.71 | 0.9414 | 320.5 | 62.9 | 0.9989 | 188.3 | 0.285 | 0.017 | 33.16 | 63.07 |
Error% | 0.2917 | 0.9404 | 0.216 | 0.579 | 8.196 | 3.351 | 6.738 | ||||
1000 | 10.43 | 25.86 | 0.9355 | 429.8 | 79.77 | 1 | 220.7 | 0.103 | 0.01 | 17.17 | 79.77 |
Error% | 0.1781 | 0.6062 | 0.1347 | 0.3081 | 6.865 | 2.755 | 7.078 |
Fig. 9. Results of static immersion tests. (a) Variations in loss of mass with time for annealed Ti80 alloys in 5 M HCl solution for 10 days. (b) Corrosion rate varies with annealing temperature. (c-f) SEM images of the morphologies of corroded surface, and (g-j) cross section BSE images of annealed Ti80 alloys in 5 M HCl solution after 10 days immersion, at (c) and (g) 850 °C, (d) and (h) 900 °C, (e) and (i) 950 °C, (f) and (j) 1000 °C.
Fig. 10. Results of XPS measurements for annealed Ti80 alloys. (a) Typical survey spectra from XPS; detailed spectra from (b) Ti 2p, (c) O 1s, (d) Nb 3d, (e) Zr 3d, (f) Mo 3d and (g) Al 2p, all measured from the surface of annealed Ti80 alloys after 10 days of immersion in 5 M HCl solution.
Fig. 11. Schematic diagrams of salient corrosion mechanisms in annealed Ti80 alloys in 5 M HCl solution, showing (a) dissolution of native oxide film, and (b) dissolution of substrate.
Fig. 13. The relationship between the corrosion current density and volume fraction of β phase in (a) 3.5 wt.% NaCl and (b) 5 M HCl; corresponding relationship between the corrosion current density and thickness of α phase in (c) 3.5 wt.% NaCl and (d) 5 M HCl.
Fig. 14. 3D and 2D AFM images of annealed Ti80 alloys after 4 h immersion in 5 M HCl solution, at (a) and (e) 850 °C, (b) and (f) 900 °C, (c) and (g) 950 °C, (d) and (h) 1000 °C. Line-profile analysis of relative height of β phase, at (i) 850 °C, (j) 900 °C, (k) 950 °C and (l) 1000 °C.
[1] | D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879. |
[2] | B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, H. Li, Corros. Sci. 137 (2018) 176-183. |
[3] |
Y. Bai, X. Gai, S. Li, L.-C. Zhang, Y. Liu, Y. Hao, X. Zhang, R. Yang, Y. Gao, Corros. Sci. 123 (2017) 289-296.
DOI URL |
[4] | S. Yan, G.-L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M. S. Dargusch, L. Zhou, J. Mater. Sci. Technol. 34 (2018) 421-435. |
[5] | W. Xu, X. Lu, J. Tian, C. Huang, M. Chen, Y. Yan, L. Wang, X. Qu, C. Wen, J. Mater. Sci. Technol. 41 (2020) 191-198. |
[6] |
M.A. Khan, R.L. Williams, D.F. Williams, Biomaterials 20 (1999) 631-637.
URL PMID |
[7] | S. Tamilselvi, V. Raman, N. Rajendran, Electrochim. Acta 52 (2006) 839-846. |
[8] | X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Corros. Sci. 145 (2018) 80-89. |
[9] | N. Dai, L.-C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, C. Yang, Corros. Sci. 111 (2016) 703-710. |
[10] | N. Dai, L.-C. Zhang, J. Zhang, Q. Chen, M. Wu, Corros. Sci. 102 (2016) 484-489. |
[11] |
Y.-L. Zhou, D.-M. Luo, J. Alloys Compd. 509 (2011) 6267-6272.
DOI URL |
[12] | P.A.B. Kuroda, M.L. Lourenco, D.R.N. Correa, C.R. Grandini, J. Alloys Compd. 815 (2020), 152108. |
[13] | Y. Yang, C. Xia, Z. Feng, X. Jiang, B. Pan, X. Zhang, M. Ma, R. Liu, Corros. Sci. 101 (2015) 56-65. |
[14] | R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, R.P. Liu, Mater. Des. 52 (2013) 981-986. |
[15] | M. Geetha, U. Kamachi Mudali, A.K. Gogia, R. Asokamani, B. Raj, Corros. Sci. 46 (2004) 877-892. |
[16] | M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, M.H. Fathi, M. Shamanian, Corrosion 66 (2010), 65004-1-65004-9. |
[17] | G.A. Longhitano, M.A. Arenas, A. Conde, M.A. Larosa, A.L. Jardini, C.A.D. Zavaglia, J.J. Damborenea, J. Alloys Compd. 765 (2018) 961-968. |
[18] | C. Xia, Z. Zhang, Z. Feng, B. Pan, X. Zhang, M. Ma, R. Liu, Corros. Sci. 112 (2016) 687-695. |
[19] | S.Y. Yu, C.W. Brodrick, M.P. Ryan, J.R. Scully, J. ElectroChem. Soc. 146 (1999) 4429-4438. |
[20] | M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, Corros. Sci. 52 (2010) 3062-3069. |
[21] | ASTM Standard G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM Standards, West Conshohocken, 2004. |
[22] | Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, Y.X. Qiao, Corros. Sci. 103 (2016) 50-65. |
[23] | Z. Cui, L. Wang, M. Zhong, F. Ge, H. Gao, C. Man, C. Liu, X. Wang, J. ElectroChem. Soc. 165 (2018) C542-C561. |
[24] | G.R. Argade, S.K. Panigrahi, R.S. Mishra, Corros. Sci. 58 (2012) 145-151. |
[25] | H. Liu, J. Yang, X. Zhao, Y. Sheng, W. Li, C.-L. Chang, Q. Zhang, Z. Yu, X. Wang, Corros. Sci. (2019), 108195. |
[26] | W.B. Utomo, S.W. Donne, Electrochim. Acta 51 (2006) 3338-3345. |
[27] | S. Ningshen, M. Sakairi, K. Suzuki, T. Okuno, Corros. Sci. 91 (2015) 120-128. |
[28] | T.M. Chiu, M. Mahmoudi, W. Dai, A. Elwany, H. Liang, H. Castaneda, Electrochim. Acta 279 (2018) 143-151. |
[29] | E. McCafferty, Corros. Sci. 47 (2005) 3202-3215. |
[30] | Z.B. Wang, H.X. Hu, Y.G. Zheng, Corros. Sci. 130 (2018) 203-217. |
[31] | M.A. Amin, S.S. Abd El Rehim, H.T.M. Abdel-Fatah, Corros. Sci. 51 (2009) 882-894. |
[32] | D. Huang, J. Hu, G.-L. Song, X. Guo, Electrochim. Acta 56 (2011) 10166-10178. |
[33] | G.W. Walter, Corros. Sci. 26 (1986) 681-703. |
[34] | T.T.M. Tran, B. Tribollet, E.M.M. Sutter, Electrochim. Acta 216 (2016) 58-67. |
[35] | A. Lasia, Electrochemical Impedance Spectroscopy and Its Applications, Springer, New York, 2014. |
[36] | Rd.P.B. Hernández, I.V. Aoki, B. Tribollet, H.G. de Melo, Electrochim. Acta 56 (2011) 2801-2814. |
[37] | A.K. Shukla, R. Balasubramaniam, Corros. Sci. 48 (2006) 1696-1720. |
[38] | J. Pan, D. Thierry, C. Leygraf, Electrochim. Acta 41 (1996) 1143-1153. |
[39] | C.L. Alexander, B. Tribollet, M.E. Orazem, Electrochim. Acta 173 (2015) 416-424. |
[40] | C.Q. Li, D.K. Xu, X.B. Chen, B.J. Wang, R.Z. Wu, E.H. Han, N. Birbilis, Electrochim. Acta 260 (2018) 55-64. |
[41] | L. Liu, L. Wu, X. Chen, D. Sun, Y. Chen, G. Zhang, X. Ding, F. Pan, J. Mater. Sci. Technol. 37 (2020) 104-113. |
[42] | M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, 2011. |
[43] |
C. Peng, Y. Liu, H. Liu, S. Zhang, C. Bai, Y. Wan, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (2019) 2121-2131.
DOI URL |
[44] | J. Yang, Y. Lu, Z. Guo, J. Gu, C. Gu, Corros. Sci. 130 (2018) 64-75. |
[45] | K.A. Yasakau, S. Kallip, M.L. Zheludkevich, M.G.S. Ferreira, Electrochim. Acta 112 (2013) 236-246. |
[46] | Z.B. Wang, H.X. Hu, C.B. Liu, Y.G. Zheng, Electrochim. Acta 135 (2014) 526-535. |
[47] |
A.D. King, N. Birbilis, J.R. Scully, Electrochim. Acta 121 (2014) 394-406.
DOI URL |
[48] |
B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Electrochim. Acta 55 (2010) 6218-6227.
DOI URL |
[49] |
J. Pan, D. Thierry, C. Leygraf, J. Biomed. Mater. Res. 28 (1994) 113-122.
DOI URL PMID |
[50] |
G. Bolat, J. Izquierdo, J.J. Santana, D. Mareci, R.M. Souto, Electrochim. Acta 88 (2013) 447-456.
DOI URL |
[51] | M.E. Orazem, B. Tribollet, V. Vivier, D.P. Riemer, E. White, A. Bunge, J. Braz. Chem. Soc. 25 (2014) 532-539. |
[52] |
M.E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pébère, A.L. Bunge, E.A. White, D.P. Riemer, M. Musiani, J. ElectroChem. Soc. 160 (2013) C215-C225.
DOI URL |
[53] |
G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176 (1984) 275-295.
DOI URL |
[54] | F. Zhang, C. Örnek, J.-O. Nilsson, J. Pan, Corros. Sci. (2019), 108319. |
[55] |
D.C. Grahame, Chem. Rev. 41 (1947) 441-501.
DOI URL PMID |
[56] |
S.Y. Yu, J.R. Scully, C.M. Vitus, J. ElectroChem. Soc. 148 (2001) B68-B78.
DOI URL |
[57] |
D.J. Blackwood, L.M. Peter, H.E. Bishop, P.R. Chalker, D.E. Williams, Electrochim. Acta 34 (1989) 1401-1403.
DOI URL |
[58] |
F. Yang, H. Kang, E. Guo, R. Li, Z. Chen, Y. Zeng, T. Wang, Corros. Sci. 139 (2018) 333-345.
DOI URL |
[59] |
H. Feng, Z. Jiang, H. Li, P. Lu, S. Zhang, H. Zhu, B. Zhang, T. Zhang, D. Xu, Z. Chen, Corros. Sci. 144 (2018) 288-300.
DOI URL |
[60] |
S. Ningshen, M. Sakairi, K. Suzuki, S. Ukai, Corros. Sci. 78 (2014) 322-334.
DOI URL |
[61] |
C.G. Jia, J. Pang, S.P. Pan, Y.J. Zhang, K.B. Kim, J.Y. Qin, W.M. Wang, Corros. Sci. 147 (2019) 94-107.
DOI URL |
[62] | X. Zhang, H. Shi, B.-Q. Xu, J.Catal. 279 (2011) 75-87. |
[63] |
E. Godlewska, M. Mitoraj, K. Leszczynska, Corros. Sci. 78 (2014) 63-70.
DOI URL |
[64] |
J. Zheng, X. Hou, X. Wang, Y. Meng, X. Zheng, L. Zheng, Corros. Sci. 96 (2015) 186-195.
DOI URL |
[65] |
M. Santamaria, F. Di Quarto, H. Habazaki, Corros. Sci. 50 (2008) 2012-2020.
DOI URL |
[66] | P.Y. Park, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci. 38 (1996) 1649-1667. |
[67] | M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, NACE International, 1974. |
[68] | C.K. Dyer, J. ElectroChem. Soc. 125 (1978) 23-29. |
[69] |
D.J. Blackwood, L.M. Peter, D.E. Williams, Electrochim. Acta 33 (1988) 1143-1149.
DOI URL |
[70] | C.K. Dyer, J.S.L. Leach, Electrochim. Acta 23 (1978) 1387-1394. |
[71] | T. Furuya, J. Kawafuku, H. Satoh, K. Shimogori, A. Aoshima, S. Takeda, Isij Int. 31 (1991) 189-193. |
[72] | J.-R. Chen, W.-T. Tsai, Electrochim. Acta 56 (2011) 1746-1751. |
[73] | W.Y. Guo, J. Sun, J.S. Wu, Mater. Chem. Phys. 113 (2009) 816-820. |
[74] |
M.A. Khan, R.L. Williams, D.F. Williams, Biomaterials 20 (1999) 631-637.
DOI URL PMID |
[75] | K.D. Ralston, N. Birbilis, C.H.J. Davies, Scr. Mater. 63 (2010) 1201-1204. |
[76] | J. Wan, Y. Lou, H. Ruan, Corros. Sci. 139 (2018) 13-20. |
[1] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[2] | D.P. Yang, P.J. Du, D. Wu, H.L. Yi. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process [J]. J. Mater. Sci. Technol., 2021, 75(0): 205-215. |
[3] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[4] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[5] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[6] | Huabao Yang, Liang Wu, Bin Jiang, Wenjun Liu, Jiangfeng Song, Guangsheng Huang, Dingfei Zhang, Fusheng Pan. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62(0): 128-138. |
[7] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[8] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[9] | Le Thai Duy, Ji-Ye Baek, Ye-Ji Mun, Hyungtak Seo. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT [J]. J. Mater. Sci. Technol., 2021, 71(0): 186-194. |
[10] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[11] | Xiang Peng, Shihao Xu, Dehua Ding, Guanglan Liao, Guohua Wu, Wencai Liu, Wenjiang Ding. Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg-5Li-3Al-2Zn alloy with different Sn and Y addition [J]. J. Mater. Sci. Technol., 2021, 72(0): 16-22. |
[12] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[13] | Jinkui Fan, Qiang Zheng, Rui Bao, Jianhong Yi, Juan Du. High performance Sm-Co powders obtained by crystallization from ball milled amorphous state [J]. J. Mater. Sci. Technol., 2020, 37(0): 181-184. |
[14] | Heng Chen, Zebang He, Lin Lu. Correlation of surface features with corrosion behaviors of interstitial free steel processed by temper rolling [J]. J. Mater. Sci. Technol., 2020, 36(0): 37-44. |
[15] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||