J. Mater. Sci. Technol. ›› 2021, Vol. 62: 221-23.DOI: 10.1016/j.jmst.2020.06.011
• Research Article • Previous Articles Next Articles
Hao Dinga, Xiping Cuia,*(), Naonao Gaoa, Yuan Sunb,*(
), Yuanyuan Zhanga, Lujun Huanga, Lin Genga
Received:
2020-03-22
Revised:
2020-06-05
Accepted:
2020-06-06
Published:
2021-01-30
Online:
2021-02-01
Contact:
Xiping Cui,Yuan Sun
About author:
yuansun@imr.ac.cn (Y. Sun).1 These authors contributed equally to this work.
Hao Ding, Xiping Cui, Naonao Gao, Yuan Sun, Yuanyuan Zhang, Lujun Huang, Lin Geng. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties[J]. J. Mater. Sci. Technol., 2021, 62: 221-23.
Raw materials | Thickness of starting powder layers (μm) | Labeled resulting laminated composites |
---|---|---|
Ti-6Al-4V powder layers | 400 | 400Ti-400TiAl |
TiAl powder layers | 400 | |
TiB2/Ti mixed powder layers | 400 | 400(TiB/Ti)-400TiAl |
TiAl powder layers | 400 | |
TiB2/Ti mixed powder layers | 400 | 400(TiB/Ti)-800TiAl |
TiAl powder layers | 800 | |
TiB2/Ti mixed powder layers | 800 | 800(TiB/Ti)-400TiAl |
TiAl powder layers | 400 |
Table 1 Designed thickness variation of TiB2/Ti mixed powder layers and TiAl powder layers and the responding resulting (TiB/Ti)-TiAl laminated composites.
Raw materials | Thickness of starting powder layers (μm) | Labeled resulting laminated composites |
---|---|---|
Ti-6Al-4V powder layers | 400 | 400Ti-400TiAl |
TiAl powder layers | 400 | |
TiB2/Ti mixed powder layers | 400 | 400(TiB/Ti)-400TiAl |
TiAl powder layers | 400 | |
TiB2/Ti mixed powder layers | 400 | 400(TiB/Ti)-800TiAl |
TiAl powder layers | 800 | |
TiB2/Ti mixed powder layers | 800 | 800(TiB/Ti)-400TiAl |
TiAl powder layers | 400 |
Fig. 2. Typical microstructure of the 400Ti-400TiAl laminated composites with the respective starting layer thickness of 400 μm fabricated by spark plasma sintering at 1250 ℃ for 15 min under the pressure of 50 MPa: (a) SEM image of representative microstructure of the resulting 400Ti-400TiAl laminated composites consisting of alternating TiAl layers, Ti3Al layers and Ti layers; SEM image of the representative microstructure of TiAl layer; (b) SEM image of the representative microstructure of TiAl layer; OM image of the representative microstructure of Ti3Al interfacial reaction layer (c) and Ti layer (d); (e) SEM/EDX results along the red line shown in Fig. 2(a); (f) XRD patterns of the resulting 400Ti-400TiAl laminated composites.
Fig. 3. Representative microstructure of the 400(TiB/Ti)-400TiAl laminated composites with the respective original layer thickness of 400 μm produced by spark plasma sintering at 1250 ℃ for 15 min under the pressure of 50 MPa: (a) SEM image of microstructure of the 400(TiB/Ti)-400TiAl laminated composites; (b) the magnified SEM image of the red rectangle zone shown in Fig. 3(a), displaying the morphologies of the TiB/Ti composite layers, Ti3Al interfacial reaction layers and TiAl layer, respectively; SEM image of the representative microstructure of TiB/Ti layer (c), Ti3Al interfacial reaction layers (d) and TiAl layer (e); (f) XRD patterns of the resulting 400(TiB/Ti)-400TiAl laminated composites.
Fig. 4. Microstructure and chemical compositions of the 800(TiB/Ti)-400TiAl laminated composites with the respective original layer thickness of 800 μm and 400 μm prepared by spark plasma sintering at 1250 ℃ for 15 min under the pressure of 50 MPa: (a) SEM image of microstructure of the 800(TiB/Ti)-400TiAl laminated composites; (b) the magnified SEM image of the red rectangle zone indicated in Fig. 4(a), showing the morphologies of the TiB/Ti composite layers, Ti3Al interfacial reaction layers and TiAl layer; (c) SEM/EDX results different zones (Red points) shown in Fig. 4(b).
Fig. 5. Microstructure of the 400(TiB/Ti)-800TiAl laminated composites with the respective starting layer thickness of 400 μm and 800 μm obtained by spark plasma sintering at 1250 ℃ for 15 min under the pressure of 50 MPa: (a) SEM image of microstructure of the 400(TiB/Ti)-800TiAl laminated composites; (b) the magnified SEM image of the red rectangle zone indicated in Fig. 5(a), showing the morphologies of the TiB/Ti composite layers, Ti3Al interfacial reaction layers and TiAl layer.
Resulting composites | Component layers | Component layer thickness (μm) |
---|---|---|
400Ti-400TiAl laminated composites | Ti layers | 220 ± 5 |
TiAl layers | 360 ± 10 | |
Ti3Al layer | 100 ± 10 | |
400(TiB/Ti)-400TiAl laminated composites | TiB/Ti layers | 350 ± 20 |
TiAl layers | 400 ± 20 | |
Ti3Al layer | 35 ± 5 | |
800(TiB/Ti)-400TiAl laminated composites | TiB/Ti layers | 790 ± 10 |
TiAl layers | 330 ± 20 | |
Ti3Al layer | 40 ± 5 | |
400(TiB/Ti)-800TiAl laminated composites | TiB/Ti layers | 360 ± 10 |
TiAl layers | 760 ± 20 | |
Ti3Al layer | 40 ± 5 |
Table 2 Thickness variation of Ti3Al interfacial reaction layer, TiB/Ti composite (Ti) layer and TiAl layer within different (TiB/Ti)-TiAl laminated composites.
Resulting composites | Component layers | Component layer thickness (μm) |
---|---|---|
400Ti-400TiAl laminated composites | Ti layers | 220 ± 5 |
TiAl layers | 360 ± 10 | |
Ti3Al layer | 100 ± 10 | |
400(TiB/Ti)-400TiAl laminated composites | TiB/Ti layers | 350 ± 20 |
TiAl layers | 400 ± 20 | |
Ti3Al layer | 35 ± 5 | |
800(TiB/Ti)-400TiAl laminated composites | TiB/Ti layers | 790 ± 10 |
TiAl layers | 330 ± 20 | |
Ti3Al layer | 40 ± 5 | |
400(TiB/Ti)-800TiAl laminated composites | TiB/Ti layers | 360 ± 10 |
TiAl layers | 760 ± 20 | |
Ti3Al layer | 40 ± 5 |
Fig. 6. Bending strengths of the monolithic TiAl alloys, 400Ti-400TiAl laminated composites, 400(TiB/Ti)-400TiAl laminated composites, 800(TiB/Ti)-400TiAl laminated composites, 400(TiB/Ti)-800TiAl laminated composites and network TiB/Ti composites.
Fig. 7. Fracture morphologies of 400(TiB/Ti)-400TiAl laminated composites: (a) SEM image of fracture surfaces of the 400(TiB/Ti)-400TiAl laminated composites, displaying the typical fracture features of the multi-layered structure; (b) Fracture morphologies of TiB/Ti composite layers, showing the ductile fracture characteristics including numerous dimples and the breakage and pull-out of in-situ synthesized TiB whiskers; (c) SEM image of fracture surfaces of the Ti3Al interfacial reaction layer, indicating typical cleavage fracture mode including river-like patterns; (d) Fracture morphologies of TiAl layer, exhibiting intergranular fracture and cleavage fracture mode containing river-like patterns.
Fig. 8. Fracture toughnesses of the monolithic TiAl alloys, 400Ti-400TiAl laminated composites, 400(TiB/Ti)-400TiAl laminated composites, 800(TiB/Ti)-400TiAl laminated composites, 400(TiB/Ti)-800TiAl laminated composites and network TiB/Ti composites, respectively.
Fig. 9. A comparison of bending strength and fracture toughness between the 800(TiB/Ti)-400TiAl laminated composites prepared in the present work and the TiAl-Ti laminated composites, TiB/Ti composites and TiAl matrix composites published in References.
Fig. 10. Crack propagation characteristics in the (TiB/Ti)-TiAl laminated composites: (a) SEM image of crack propagation path in the 400(TiB/Ti)-400TiAl laminated composites; (b) Magnified SEM image of Zone 1 shown in Fig. 10(a), showing the crack propagation features within network TiB/Ti composite layer; (c) Magnified OM image of Zone 2 indicated in Fig. 10(a), exhibiting the crack propagation path within Ti3Al interfacial reaction layer and TiAl layer; (d) Schematic illustration of crack propagation characteristics of (TiB/Ti)-TiAl laminated composites.
Fig. 11. Tensile properties and fracture morphologies at high temperature of 400(TiB/Ti)-400TiAl laminated composites and network TiB/Ti composites: (a) A comparison of tensile properties between network TiB/Ti composites tested at 450-550 °C and 400(TiB/Ti)-400TiAl laminated composites measured in the temperature range of 600-700 °C; The corresponding facture surfaces of the 400(TiB/Ti)-400TiAl laminated composites after tensile testing at 700 °C: (b) exhibiting the fracture characteristics of the interface between network TiB/Ti composites and Ti3Al interfacial reaction layer; (c) indicating the fracture features of the interface between Ti3Al interfacial reaction layer and TiAl layer.
[1] |
H.A. Lipsitt, S. Dan, R.E. Schafrik, Metall. Trans. A 6 (1975) 1991-1996.
DOI URL |
[2] |
C.M. Ward-Close, R. Minor, P.J. Doorbar, Intermetallics 4 (1996) 217-229.
DOI URL |
[3] |
Z.X. Chen, H.S. Ding, R.R. Chen, S.Q. Liu, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 35 (2019) 23-28.
DOI URL |
[4] |
H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, A. Bartels, Adv. Eng. Mater. 10 (2008) 707-713.
DOI URL |
[5] |
J. Cheng, S. Zhu, Y. Yu, J. Yang, W. Liu, J. Mater. Sci. Technol. 34 (2018) 670-678.
DOI URL |
[6] |
J.C. Pang, G.H. Fan, X.P. Cui, A.B. Li, L. Geng, Z.Z. Zheng, Q.W. Wang, J. Mater. Sci. Technol. 29 (2013) 1191-1196.
DOI URL |
[7] |
Y.M. Liu, Z.Y. Xiu, G.H. Wu, W.S. Yang, G.Q. Chen, H.S. Gou, J. Mater. Sci. 44 (2009) 4258-4263.
DOI URL |
[8] |
K.S. Vecchio, F. Jiang, Mater. Sci. Eng. A 649 (2016) 407-416.
DOI URL |
[9] |
R.D. Price, F.C. Jiang, R.M. Kulin, K.S. Vecchio, Mater. Sci. Eng. A 528 (2011) 3134-3146.
DOI URL |
[10] |
A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Acta Mater. 51 (2003) 2933-2957.
DOI URL |
[11] |
H.S. Ren, H.P. Xiong, B. Chen, S.J. Pang, B.Q. Chen, L. Ye, J. Mater. Sci. Technol. 32 (2016) 372-380.
DOI URL |
[12] |
H.P. Qu, P. Li, S.Q. Zhang, A. Li, H.M. Wang, Mater. Des. 31 (2010) 574-582.
DOI URL |
[13] | T.T. Ai, Y.H. Fei, Z.F. Deng, W.H. Li, X.M. Feng, X.Q. Yuan, Q.F. Niu, Mater. Express 8 (2018) 361-367. |
[14] |
H.F. Zhu, W. Sun, F.T. Kong, X.P. Wang, Z.H. Song, Y.Y. Chen, Mater. Sci. Eng. A 742 (2019) 704-711.
DOI URL |
[15] |
T. Li, E.A. Olevsky, M.A. Meyers, Mater. Sci. Eng. A 473 (2008) 49-57.
DOI URL |
[16] |
Y. Watanabe, N. Yamanaka, Y. Fukui, Metall. Mater. Trans. A 30 (1999) 3253-3261.
DOI URL |
[17] |
L.M. Peng, H. Li, J.H. Wang, Mater. Sci. Eng. A 406 (2005) 309-318.
DOI URL |
[18] |
W. Sun, F. Yang, F.T. Kong, X.P. Wang, Y.Y. Chen, Mater. Charact. 144 (2018) 173-181.
DOI URL |
[19] |
Z.H. Hu, Y. Li, L. Ma, H.J. Liu, Appl. Mech. Mater. 55-57 (2011) 183-187.
DOI URL |
[20] |
L.J. Huang, L. Geng, A.B. Li, F.Y. Yang, H.X. Peng, Scr. Mater. 60 (2009) 996-999.
DOI URL |
[21] |
B.X. Liu, L.J. Huang, X.D. Rong, L. Geng, F.X. Yin, Compos. Sci. Technol. 126 (2016) 94-105.
DOI URL |
[22] |
L.J. Huang, L. Geng, H.X. Peng, J. Zhang, Scr. Mater. 64 (9) (2011) 844-847.
DOI URL |
[23] |
F.H. Froes, C. Suryanarayana, D. Eliezer, J. Mater. Sci. 27 (19) (1992) 5113-5140.
DOI URL |
[24] |
L.J. Huang, L. Geng, H.X. Peng, Prog. Mater. Sci. 71 (2015) 93-168.
DOI URL |
[25] |
L.J. Huang, L. Geng, H.X. Peng, K. Balasubramaniam, G.S. Wang, Mater. Des. 32 (2011) 3347-3353.
DOI URL |
[26] |
T. Zofia, C. Robin, M. Jean-Philippe, Metall. Mater. Trans. A 49 (2018) 4849-4859.
DOI URL |
[27] |
X.P. Cui, H. Ding, Y.Y. Zhang, Y. Yao, G. Fan, L. Huang, L. Geng, Z. Zheng, J. Chen, J. Alloys. Compd. 775 (2019) 1057-1067.
DOI URL |
[28] |
B.S. Li, J.L. Shang, J.J. Guo, Mater. Sci. Eng. A 383 (2004) 316-322.
DOI URL |
[29] |
S.C. Tjong, Y.W. Mai, Compos. Sci. Technol. 68 (2008) 583-601.
DOI URL |
[30] |
S. Lyu, Y. Sun, G. Li, W. Xiao, C. Ma, Mater. Des. 143 (2018) 160-168.
DOI URL |
[31] |
S. Lyu, Y. Sun, L. Ren, W. Xiao, C. Ma, Adv. Eng. Mater. 19 (2017), 1700070.
DOI URL |
[32] | Y.H. Fei, T.T. Ai, Q.F. Niu, W.H. Li, X.Q. Yuan, R. Jing, H.F. Dong, Materials 10 (2017) 1175. |
[33] |
C.F. Lin, F.C. Jiang, Y.Q. Han, E.H. Wang, D. Yuan, J. Alloys. Compd. 743 (2018) 52-62.
DOI URL |
[34] | W. Yu, K. Zhu, Y. Aman, Z. Guo, S. Xiong, Mater. Des. 101 (2016) 102-108. |
[35] | K. Zhu, W. Yu, Y. Aman, T. Jing, Synthesis, J. Mater. Sci. 51 (2016) 8747-8760. |
[36] | L.Y. Xiang, F. Wang, J.F. Zhu, X.F. Wang, Mater. Sci. Eng. A 528 (2011) 3337-3341. |
[37] | T.T. Ai, Q.F. Niu, Z.F. Deng, X.Q. Yuan, W.H. Li, Int. J. Mater. Res. 110 (2019) 740-745. |
[38] | T.T. Ai, N. Yu, X.M. Feng, N.S. Xie, W.H. Li, Met. Mater. Int. 21 (2015) 179-184. |
[39] | P.F. Becher, C.H. Hsueh, P. Angelini, T.N. Tiegs, J. Am. Ceram. Soc. 71 (2005) 1050-1061. |
[40] | R. Cao, X.M. Lei, H.J. Chen, J. Zhang, Mater. Sci. Eng. A 465 (2007) 183-193. |
[41] | L.E. Karkina, O.A. Elkina, L.I. Yakovenkova, J. Alloys. Compd. 494 (2010) 223-232. |
[42] |
R.J. Kerans, Metall. Trans. A 15 (1984) 1721-1729.
DOI URL |
[43] | S.H. Qin, X.P. Cui, Z. Tian, L. Geng, B.X. Liu, J. Zhang, J.F. Chen, J. Alloys. Compd. 700 (2017) 122-129. |
[44] | P. Dong, Z. Wang, W.X. Wang, S.P. Chen, J. Zhou, Mater. Sci. Eng. A 691 (2017) 141-149. |
[45] | X.P. Cui, Y.Y. Zhang, Y. Yao, H. Ding, L. Geng, L.J. Huang, Y. Sun, Metall. Mater. Trans. A 50 (2019) 5853-5865. |
[46] | L.J. Huang, L. Geng, B. Wang, L.Z. Wu, Mater. Des. 45 (2013) 532-538. |
[47] | L.H. Han, L. Li, J. Sun, Mater. Sci. Eng. A 403 (2005) 165-173. |
[48] | C. Yan, J.H. Chen, J. Sun, Z. Wang, Metall. Mater. Trans. A 24 (1993) 1381-1389. |
[49] | K.J. Hsia, Z. Suo, W. Yang, J. Mech. Phys. Solids 42 (1994) 877-896. |
[1] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
[2] | Wenqiang Hu, Zhenying Huang, Qun Yu, Yuanbo Wang, Yidan Jiao, Cong Lei, Leping Cai, Hongxiang Zhai, Yang Zhou. Ti2AlC triggered in-situ ultrafine TiC/Inconel 718 composites: Microstructure and enhanced properties [J]. J. Mater. Sci. Technol., 2020, 51(0): 70-78. |
[3] | S.L. Xie, Z.B. Wang, K. Lu. Diffusion behavior of Cr in gradient nanolaminated surface layer on an interstitial-free steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 460-464. |
[4] | Wu Ziyi, Zhang Jinyong, Shi Taojie, Zhang Fan, Lei Liwen, Xiao Han, Fu Zhengyi. Fabrication of laminated TiB2-B4C/Cu-Ni composites by electroplating and spark plasma sintering [J]. J. Mater. Sci. Technol., 2017, 33(10): 1172-1176. |
[5] | X. Li, T.F. Jing, M.M. Lu, R. Xu, B.Y. Liang, J.W. Zhang. Fatigue Property of Nano-grained Delaminated Low-carbon Steel Sheet [J]. J Mater Sci Technol, 2011, 27(4): 364-368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||