J. Mater. Sci. Technol. ›› 2020, Vol. 59: 243-261.DOI: 10.1016/j.jmst.2020.04.037
• Invited Review • Previous Articles
Xianrui Xiea, Yujie Chena,*, Xiaoyu Wanga, Xiaoqing Xua, Yihong Shena, Atta ur Rehman Khana, Ali Aldalbahib,*(), Allison E. Fetzc, Gary L. Bowlinc, Mohamed El-Newehyb, Xiumei Moa,*(
)
Received:
2020-01-15
Revised:
2020-04-10
Accepted:
2020-04-12
Published:
2020-12-15
Online:
2020-12-18
Contact:
Yujie Chen,Ali Aldalbahi,Xiumei Mo
Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration[J]. J. Mater. Sci. Technol., 2020, 59: 243-261.
Particular year | Development of electrospinning technology |
---|---|
1902 | Solution Electrospinning |
1980 | Melt Electrospinning |
1999 | Preparation of Electrospun Nanocomposites |
2000 | Electrospun Nanofibers for Tissue Engineering |
2003 | Coaxial Electrospun Nanofibers |
2005 | Emulsion Electrospinning Nanofibers |
2007 | Dynamic Water Flow Electrospun nanoyarns |
2012 | Electrospun Continuous Nanoyarn |
2014 | Preparation of three-dimensional porous aerogel by electrospinning combined with freeze-drying technology |
Table 1 Development history of electrospun nanofibers.
Particular year | Development of electrospinning technology |
---|---|
1902 | Solution Electrospinning |
1980 | Melt Electrospinning |
1999 | Preparation of Electrospun Nanocomposites |
2000 | Electrospun Nanofibers for Tissue Engineering |
2003 | Coaxial Electrospun Nanofibers |
2005 | Emulsion Electrospinning Nanofibers |
2007 | Dynamic Water Flow Electrospun nanoyarns |
2012 | Electrospun Continuous Nanoyarn |
2014 | Preparation of three-dimensional porous aerogel by electrospinning combined with freeze-drying technology |
Fig. 3. Schematic of different electrospinning techniques. (A) The traditional electrospinning; (B) Coaxial electrospinning; (C) Emulsion electrospinning; (D) Dynamic water flow electrospinning.
Fig. 4. Diagram illustrating the double-spray electrospinning [22]. (a) The schematic of double-spray electrospinning. (b) A photograph of the receiving funnel. (c) A photograph of the process of nanoyarn formation and winding. (d) A photograph of yarn coil. (e) Scanning electron microscopy (SEM) images of a single nanoyarn.
Fig. 6. Schematic of how a scaffold structure affects cell adhesion and spreading [32]. (A), (B) Cells adhere in a flat morphology on the microporous and microfiber scaffolds, similar to that observed on flat surfaces. (C) Nanofibers have a greater surface area, and therefore adsorbed more protein, providing more adhesion sites for cell membrane receptors.
Fig. 7. Schematic of the fabrication of a scaffold for skin tissue engineering by a four-step process and the animal experiment to evaluate wound repair [44]. (1) 2D nanofibrous mats were fabricated via electrospinning. (2) A homogeneous short fiber solution was prepared by high-speed mechanical cutting. (3) The 3D scaffold was obtained after freeze-drying the solution. (4) The 3D scaffold was reinforced through heat treatment.
Fig. 8. Confocal microscopy images of human smooth muscle cells (hSMCs) and L929 murine fibroblasts after culturing for 5 days on the P(LLA-CL), 3: 1 and 1:1 composite scaffolds (A). Cell viability of hSMCs (B) and L929 cells (C) cultured for 1, 3, and 5 days [50].
Fig. 9. Process of fabricating the core (heparin)-shell (PC/SAB-MSN) fiber (left) [51]. Transmission electron microscope images of MSN (A) and core (heparin)-sheath (P(LLA-CL) and collagen with SAB-MSN) fiber (B), SEM of the nanofiber with MSN particle on the surface (C), SEM-EDS image of the fiber membrane (D).
Fig. 10. Fluorescence micrographs of (A-D) the bilayer vascular scaffold after implantation for 2 months and (E-H) the autologous vessel both after immunohistochemical staining of (A, E) DAPI for nuclei, (B, F) CD31 for endothelial cells, and (C, G) α-SMA for smooth muscle cells. (D, H) The corresponding merged fluorescence micrographs [53].
Fig. 11. A schematic showing how ideal NGCs are constructed by incorporating a diverse array of physical and biological cues into a neural scaffold with different configurations [56].
Fig. 16. Schematic of 3D nanofibrous scaffold preparation incorporating nano-hydroxyapatite (nHA) and BMP-2 for testing in an in vivo, cranial defect regeneration model [76].
Fig. 17. Design of an scaffold containing MSN and alendronate (ALN) for the dual delivery of ALN and silicate to modulate bone resorption and formation for accelerating bone repair. The ALN pre-loaded within the MSNs is released from the nano?bers and inhibits the bone-resorption process by preventing GTP-related protein expression. The silicate produced by the hydrolysis of MSNs is released from the nano?bers and promotes the bone-forming process by improving vascularization and bone calci?cation [77].
Fig. 18. Electrospun silk fibroin nanofibrous scaffolds engineered with two-stage hydroxyapatite (HA) particle functionalization. These scaffolds were found to support the osteogenic differentiation of genetically-modified human adipose-derived mesenchymal stem cells after 21 days in vitro and enhance mineralized bone formation and collagen deposition in vivo in a critical-sized calvarial bone defect after 8 weeks [79].
Fig. 19. Macroscopic images (a, d, and g) of the cartilage joints from the non-treated group, group treated with the non-functionalized scaffold (3DS-1), and the group treated with the hyaluronic acid-functionalized scaffold (3DS-2) at 12 weeks after surgery. Histological analysis of the cartilage defect area from the three groups, stained with Safranin O-fast green (b, e, and h) and H&E (c, f, and i), indicate that the functionalized scaffold enhanced repair. Arrows and dotted lines indicated the defect sites. OC: original cartilage tissue. RC: repaired cartilage tissue [83].
Fig. 20. Schematic of various electrospun fiber scaffolds [84]. (a) Traditional fiber scaffold-electrospun fiber membrane. (b) 3D fibrous scaffold constructed by dispersed Electrospun, short fibers via freeze-shaping. (c) The synthetic steps of a 3D-printed fiber-based scaffold.
Fig. 21. Water-induced shape memory of 3D printed scaffolds made from an ink containing electrospun nanofibers [84]. (a) Square scaffold. (b) In a wet state, a tubular-shaped scaffold was obtained by folding the opposite angle of the square, and the scaffold was freeze-dried to maintain its deformed shape. (c) Shape recovery process of square scaffold after absorption of water for 12 s. (d) Square scaffold completely recovered its original shape within 20 s of water absorption. (e) Rectangular scaffold. (f) Wet scaffold was folded into a wave shape and freeze-dried to maintain its shape. (g) Shape recovery process of rectangular scaffold after water absorption for 12 s. (h) Rectangular scaffold completely recovered its original shape within 30 s of water absorption.
Fig. 22. Fabrication and characterization of collagen control scaffolds and bi-layered scaffolds of electrospun PLA and collagen [82]. The fabrication process of collagen scaffolds (A) and bi-layered scaffolds (B) and their microstructures.
Fig. 23. Macroscopic images of the cartilage joints from three groups at 6 (upper panel) and 12 (lower panel) weeks after surgery [82]. (A, D) Non-treated group, (B, E) collagen control group, and (C, F) bi-layered scaffold group.
Fig. 24. (A) Composite scaffold preparation. Dual electrospinning was employed to fabricate a scaffold containing PCL and methacrylated gelatin (mGLT) fibers (Insert 1). The dry scaffold was wetted with an aqueous photo-initiator solution (Insert 2) and then photo-crosslinked by visible light to retain the gelatin (Insert 3). (B) Scaffold sheets were wetted, stacked, and exposed to visible light for crosslink formation between adjacent scaffold layers to create a complex multi-layered structure [90].
Fig. 25. Schematic representation of electrospinning setup and hierarchical assembling of continuous aligned nanofiber threads (CANT). (A) Continuous electrospinning system to produce CANT; (B) CANT as the elementary unit of the 3D assembly, mimicking the collagen fibers in native tendon; (C) Yarns composed of twisted CANT represent tendon fascicles: i) Yarn 6, ii) Yarn 9, and iii) Yarn 12; (D) Braided 3D scaffold produced using Yarns; (E) Weaving process using Yarns: (i) arrays of 1 mm pins, (ii) Yarns weaving, and (iii) final 3D Woven scaffold. Both textile scaffolds represent the tendon unit [92].
Fig. 26. Schematic showing the structure of a native bone-tendon insertion site and fabrication of an aligned gradient platform with immobilized PDGF-BB that could mimic the bone-tendon insertion site [96].
Fig. 27. Schematic illustration of the application of the double-layer membrane. (a and b) The nanofibrous membrane is placed at the site of tendon-to-bone insertion. (c) The structure and composition of the scaffold mimic the normal fibrocartilage enthesis. (d) Illustration of hydroxyapatite (HA) growth on PLLA fibers [97].
[1] |
J.J. Xue, T. Wu, Y.Q. Dai, Y.N. Xia, Chem. Rev. 119 (2019) 5298-5415.
DOI URL PMID |
[2] |
F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y.X. Ma, S. Wang, Biomaterials 25 (2004) 1891-1900.
DOI URL PMID |
[3] | K.L. Niece, J.D. Hartgerink, J.J.M. Donners, S.I. Stupp, J. Am. Chem. Soc. 125 (2003) 7146-7147. |
[4] |
A.I. Carim, K.R. Hamann, N.A. Batara, J.R. Thompson, H.A. Atwater, N.S. Lewis, J. Am. Chem. Soc. 140 (2018) 6536-6539.
DOI URL PMID |
[5] | A. Formhals, US Patent, No. 1975504, 1934-10-02. |
[6] |
N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28 (2010) 325-347.
DOI URL PMID |
[7] | D. Li, Y.N. Xia, Adv. Mater. 16 (2004) 1151-1170. |
[8] | Y. Liao, C.H. Loh, M. Tian, R. Wang, A.G. Fane, Prog. Polym. Sci. 77 (2018) 69-94. |
[9] |
G.D. Liu, Z.B. Gu, Y. Hong, L. Cheng, C.M. Li, J. Control. Release 252 (2017) 95-107.
URL PMID |
[10] |
S. Mitragotri, D.G. Anderson, X. Chen, E.K. Chow, D. Ho, A.V. Kabanov, J.M. Karp, K. Kataoka, C.A. Mirkin, S.H. Petrosko, J.J. Shi, M.M. Stevens, S.H. Sun, S. Teoh, S.S. Venkatraman, Y.N. Xia, S.T. Wang, Z. Gu, C.J. Xu, ACS Nano 9 (2015) 6644-6654.
DOI URL PMID |
[11] | L. Jiang, Y.C. Jiang, J. Stiadle, X.F. Wang, L.X. Wang, Q. Li, C.Y. Shen, S.L. Thibeault, L.S. Turng, Mater. Sci. Eng. C 94 (2019) 740-749. |
[12] |
Y.S. Zhang, Y.N. Xia, Nanomedicine 10 (2015) 689-692.
DOI URL PMID |
[13] | G.S. Hussey, J.L. Dziki, S.F. Badylak, Nat. Rev. Mater. 3 (2018) 159-173. |
[14] | Kenry, C.T. Lim, . Prog. Polym. Sci. 70 (2017) 1-17. |
[15] |
F.M. Chen, X. Liu, Prog. Polym. Sci. 53 (2016) 86-168.
DOI URL PMID |
[16] |
D. Tang, R.S. Tare, L.Y. Yang, D.F. Williams, K.L. Ou, R.O. Oreffo, Biomaterials 83 (2016) 363-382.
DOI URL PMID |
[17] | C. Guignard, US Patent, No. 4230650, 1980-10-28. |
[18] | L. Larrondo, M.R. Stjohn, J. Polym. Sci. Polym. Phys. Ed. 19 (1981) 909-920. |
[19] | Z.C. Sun, E. Zussman, A.L. Yarin, J.H. Wendorff, A. Greiner, Adv. Mater. 15 (2003) 1929-1932. |
[20] | X.L. Xu, X.L. Zhuang, X.S. Chen, X.R. Wang, L.X. Yang, X.B. Jing, Macromol. Rapid Commun. 27 (2006) 1637-1642. |
[21] | W.E. Teo, R. Gopal, R. Ramaseshan, K. Fujihara, S. Ramakrishnan, Polymer 48 (2007) 3400-3405. |
[22] | U. Ali, Y.Q. Zhou, X.G. Wang, T. Lin, J. Text. Inst. 103 (2012) 80-88. |
[23] |
Y. Si, J.Y. Yu, X.M. Tang, J.L. Ge, B. Ding, Nat. Commun. 5 (2014) 5802-5810.
DOI URL PMID |
[24] | J.L. Wu, S. Liu, L.P. He, H.S. Wang, C.L. He, C.Y. Fan, X.M. Mo, Mater. Lett. 89 (2012) 146-149. |
[25] |
J.L. Wu, C. Huang, W. Liu, A.L. Yin, W.M. Chen, C.L. He, H.S. Wang, S. Liu, C.Y. Fan, G.L. Bowlin, X.M. Mo, J. Biomed. Nanotechnol. 10 (2014) 603-614.
DOI URL PMID |
[26] | K.A. Piez, Extracellular Matrix Biochemistry, Elsevier, New York, 1984, pp. 1-35. |
[27] | T. Nishida, K. Yasumoto, T. Otori, J. Desaki, Invest. Ophthalmol. Visual Sci. 29 (1988) 1887-1890. |
[28] | B.S. Kim, D.J. Mooney, Tibtechnol 16 (1998) 224-230. |
[29] |
H.F. Liu, X.L. Ding, G. Zhou, P. Li, X. Wei, Y.B. Fan, J. Nanomater 2013 (2013) 1-11.
DOI URL PMID |
[30] |
M.A. Pattison, S. Wurster, T.J. Webster, K.M. Haberstroh, Biomaterials 26 (2005) 2491-2500.
DOI URL PMID |
[31] |
K.E. Elias, R.L. Price, T.J. Webster, Biomaterials 23 (2002) 3279-3287.
DOI URL PMID |
[32] |
M.M. Stevens, J.H. George, Science 310 (2005) 1135-1138.
DOI URL PMID |
[33] |
H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti, Biomaterials 24 (2003) 2077-2082.
DOI URL PMID |
[34] | B.M. Min, S.W. Lee, J.N. Lim, Y. You, T.S. Lee, P.H. Kang, W.H. Park, Polymer 45 (2004) 7137-7142. |
[35] |
C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishina, Biomaterials 25 (2004) 877-886.
DOI URL PMID |
[36] |
Y. Wang, C. Fu, Z. Wu, L. Chen, X. Chen, Y. Wei, P. Zhang, Carbohydr. Polym. 174 (2017) 723-730.
DOI URL PMID |
[37] |
L. Bao, W. Yang, X. Mao, S.S. Mou, S.Q. Tang, Biomed. Mater. 3 (2008) 044108-044114.
DOI URL PMID |
[38] | P.J. Yu, J.A. Guo, J.J. Li, X. Shi, L.P. Wang, W. Chen, X.M. Mo, J. Biomater. Tissue Eng. 7 (2017) 386-392. |
[39] |
D.D. Zhang, L.P. Fan, L.L. Ma, J.Q. Liu, K. Zhou, X.R. Song, M.Q. Sun, X.M. Mo, C.L. He, Y.X. Chen, H.S. Wang, J. Biomed. Nanotechnol. 15 (2019) 507-517.
DOI URL PMID |
[40] |
D.S. Li, Y.L. Gao, Y.Z. Wang, X.P. Yang, C.L. He, M.F. Zhu, S.M. Zhang, X.M. Mo, J. Biomater. Appl. 33 (2019) 1118-1127.
DOI URL PMID |
[41] | L.L. Ma, D.D. Zhang, X.X. Yang, L. Zhang, J. Chu, G.Y. Kai, C.L. He, Biomed. Phys. Eng. Express 4 (2018) 025035-025043. |
[42] | T. Zhou, B.Y. Sui, X.M. Mo, J. Sun, Int. J. Nanomed. 12 (2017) 3495-3507. |
[43] |
X.R. Xie, D.S. Li, C.M. Su, W. Cong, X.M. Mo, G.G. Hou, C.H. Wang, J. Biomed. Nanotechnol. 15 (2019) 1267-1279.
DOI URL PMID |
[44] | H. Yu, X.J. Chen, J. Cai, D.D. Ye, Y.X. Wu, L.F. Fan, P.F. Liu, Chem. Eng. J. 369 (2019) 253-262. |
[45] |
M. Browning, D. Dempsey, V. Guiza, S. Becerra, J. Rivera, B. Russell, M. Höök, F. Clubb, M. Miller, T. Fossum, J.F. Dong, A.L. Bergeron, M. Hahn, E. Cosgriff-Hernandez, Acta Biomater. 8 (2012) 1010-1021.
URL PMID |
[46] |
W. Desmet, J. Vanhaecke, M. Vrolix, F. Van de Werf, J. Piessens, J. Willems, H. de Geest, Eur. Heart J. 13 (1992) 1637-1640.
URL PMID |
[47] |
C. Huang, S. Wang, L.J. Qiu, Q.F. Ke, W. Zhai, X.M. Mo, ACS Appl. Mater. Interfaces 5 (2013) 2220-2226.
DOI URL PMID |
[48] |
X. Chen, J. Wang, Q. An, D. Li, P. Liu, W. Zhu, X. Mo, Colloids Surf. B Biointerfaces 128 (2015) 106-114.
DOI URL PMID |
[49] |
A.L. Yin, K.H. Zhang, M.J. McClure, C. Huang, J.L. Wu, J. Fang, X.M. Mo, G.L. Bowlin, S.S. Al-Deyab, M. El-Newehy, J. Biomed. Mater. Res. A 101 (2013) 1292-1301.
URL PMID |
[50] |
T. Wu, B.J. Jiang, Y.F. Wang, A.L. Yin, C. Huang, S. Wang, X.M. Mo, J. Mater. Chem. B 3 (2015) 5760-5768.
DOI URL PMID |
[51] |
H.Z. Kuang, Y. Wang, J.F. Hu, C.S. Wang, S.Y. Lu, X.M. Mo, ACS Appl. Mater. Interfaces 10 (2018) 19365-19372.
DOI URL PMID |
[52] |
T. Wu, J.J. Zhang, Y.F. Wang, B.B. Sun, X.R. Guo, Y. Morsi, H. El-Hamshary, M. El-Newehy, X.M. Mo, J. Biomed. Nanotechnol. 13 (2017) 303-312.
DOI URL PMID |
[53] | T. Wu, J.L. Zhang, Y.F. Wang, B.B. Sun, M. Yin, G.L. Bowlin, X.M. Mo, ACS Appl. Bio. Mater 1 (2018) 833-844. |
[54] |
T. Wu, J.L. Zhang, Y.F. Wang, D.D. Li, B.B. Sun, H. El-Hamshary, M. Yin, X.M. Mo, Mater. Sci. Eng. C Mater. Biol. Appl 82 (2018) 121-129.
URL PMID |
[55] |
J.W. Xie, M.R. MacEwan, W.Y. Liu, N. Jesuraj, X.R. Li, D. Hunter, Y.N. Xia, ACS Appl. Mater. Interfaces 6 (2014) 9472-9480.
URL PMID |
[56] |
X.S. Gu, F. Ding, D.F. Williams, Biomaterials 35 (2014) 6143-6156.
URL PMID |
[57] |
K.H. Zhang, H.S. Wang, C. Huang, Y. Su, X.M. Mo, Y. Ikada, J. Biomed. Mater. Res. A 93 (2010) 984-993.
DOI URL PMID |
[58] |
C.Y. Wang, K.H. Zhang, C.Y. Fan, X.M. Mo, H.J. Ruan, F.F. Li, Acta Biomater. 7 (2011) 634-643.
DOI URL PMID |
[59] |
K.H. Zhang, C.Y. Wang, C.Y. Fan, X.M. Mo, J. Biomed. Mater. Res. A 102 (2014) 2680-2691.
DOI URL PMID |
[60] |
C.Y. Wang, J.J. Liu, C.Y. Fan, X.M. Mo, H.J. Ruan, F.F. Li, J. Biomater. Sci. Polym. Ed. 23 (2012) 167-184.
DOI URL PMID |
[61] |
J.G. Zhang, K.X. Qiu, B.B. Sun, J. Fang, K.H. Zhang, H. EI-Hamshary, S.S. Al-Deyabd, X.M. Mo, J. Mater. Chem. B 2 (2014) 7945-7954.
DOI URL PMID |
[62] |
B.B. Sun, T. Wu, J. Wang, D.W. Li, J. Wang, Q. Gao, M.A. Bhutto, H. El-Hamshary, S.S. Al-Deyab, X.M. Mo, J. Mater. Chem B 4 (2016) 6670-6679.
DOI URL PMID |
[63] | J. Wang, W. Zheng, L. Chen, T.H. Zhu, W. Shen, C.Y. Fan, H.J. Wang, X.M. Mo, ACS Biomater. Sci. Eng. 5 (2019) 2444-2456. |
[64] |
J. Wang, Y. Cheng, L. Chen, T.H. Zhu, K.Q. Ye, C. Jia, H.J. Wang, M.F. Zhu, C.Y. Fan, X.M. Mo, Acta Biomater. 84 (2019) 98-113.
URL PMID |
[65] |
D.W. Li, X. Pan, B.B. Sun, T. Wu, W.M. Chen, C. Huang, Q.F. Ke, H.A. Ei-Hamshary, S.S. Al-Deyab, X.M. Mo, J. Mater. Chem. B 3 (2015) 8823-8831.
DOI URL PMID |
[66] |
T. Wu, D.D. Li, Y.F. Wang, B.B. Sun, D.W. Li, Y. Morsi, H. El-Hamshary, S.S. Al-Deyab, X.M. Mo, J. Mater. Chem. B 5 (2017) 3186-3194.
URL PMID |
[67] | X. Pan, B.B. Sun, X.M. Mo, Front. Mater. Sci. 12 (2018) 438-446. |
[68] |
B.B. Sun, Z.F. Zhou, T. Wu, W.M. Chen, D.W. Li, H. Zheng, H. El-Hamshary, S.S. Al-Deyab, X.M. Mo, Y.X. Yu, ACS Appl. Mater. Interfaces 9 (2017) 26684-26696.
URL PMID |
[69] |
A. Berner, J.C. Reichert, M.B. Muller, J. Zellner, C. Pfeifer, T. Dienstknecht, M. Nerlich, S. Sommerville, I.C. Dickinson, M.A. Schutz, B. Fuchtmeier, Cell Tissue Res. 347 (2012) 501-519.
DOI URL PMID |
[70] |
J.T. Zhang, W.Z. Liu, V. Schnitzler, F. Tancret, J.M. Bouler, Acta Biomater. 10 (2014) 1035-1049.
URL PMID |
[71] |
R. Langer, J.P. Vacanti, Science 260 (1993) 920-926.
DOI URL PMID |
[72] |
S.J. Shao, S.B. Zhou, L. Li, J.R. Li, C. Luo, J.X. Wang, X.H. Li, J. Weng, Biomaterials 32 (2011) 2821-2833.
DOI URL PMID |
[73] |
W.G. Cui, Y. Zhou, J. Chang, Sci. Technol. Adv. Mater. 11 (2010) 014108-014118.
URL PMID |
[74] | S. Weiner, H.D. Wagner, Annu. Rev. Mater. Sci. 28 (2003) 271-298. |
[75] |
I. Rajzer, E. Menaszek, R. Kwiatkowski, J.A. Planell, O. Castano, Mater. Sci. Eng. C Mater. Biol. Appl 44 (2014) 183-190.
URL PMID |
[76] |
K.Q. Ye, D.H. Liu, H.Z. Kuang, J.Y. Cai, W.M. Chen, B.B. Sun, L.G. Xia, B. Fang, Y. Morsi, X.M. Mo, J. Colloid Interface Sci. 534 (2019) 625-636.
URL PMID |
[77] |
Y. Wang, W.G. Cui, X. Zhao, S.Z. Wen, Y.L. Sun, J.M. Han, H.Y. Zhang, Nanoscale 11 (2019) 60-71.
DOI URL PMID |
[78] |
M. Gutierrez-Sanchez, V.A. Escobar-Barrios, A. Pozos-Guillen, D.M. Escobar-Garcia, Mater. Sci. Eng. C Mater. Biol. Appl. 96 (2019) 798-806.
DOI URL |
[79] |
E. Ko, J.S. Lee, H. Kim, S.Y. Yang, D. Yang, K. Yang, J. Lee, J. Shin, H.S. Yang, W. Ryu, S.W. Cho, ACS Appl. Mater. Interfaces 10 (2018) 7614-7625.
DOI URL PMID |
[80] |
N.H. Marins, B.E.J. Lee, R.M.E. Silva, A. Raghavan, N.L.V. Carreno, K. Grandfield, Colloids Surf. B Biointerfaces 182 (2019) 110386-110395.
DOI URL PMID |
[81] |
S.P. Nukavarapu, D.L. Dorcemus, Biotechnol. Adv. 31 (2013) 706-721.
DOI URL PMID |
[82] |
S.F. Zhang, L.K. Chen, Y.Z. Jiang, Y.Z. Cai, G.W. Xu, T. Tong, W. Zhang, L.L. Wang, J.F. Jia, P.H. Shi, H.W. Ouyang, Acta Biomater. 9 (2013) 7236-7247.
DOI URL PMID |
[83] |
W.M. Chen, S. Chen, Y. Morsi, H. El-Hamshary, M. El-Newhy, C.Y. Fan, X.M. Mo, ACS Appl. Mater. Interfaces 8 (2016) 24415-24425.
DOI URL PMID |
[84] | W.M. Chen, Y. Xu, Y.Q. Liu, Z.X. Wang, Y.Q. Li, G.N. Jiang, X.M. Mo, G.D. Zhou, Mater. Des. 179 (2019) 107886-107895. |
[85] |
H.Y. Yin, J. Wang, Z.Q. Gu, W.H. Feng, M.C. Gao, Y. Wu, H. Zheng, X.M. He, X.M. Mo, J. Biomater. Appl. 32 (2017) 331-341.
DOI URL PMID |
[86] | J. Wang, B.B. Sun, L.L. Tian, X.M. He, Q. Gao, T. Wu, S. Ramakrishna, J.H. Zheng, X.M. Mo, Mater. Sci. Eng. C Mater.Biol. Appl. 70 (2017) 637-645. |
[87] |
E. Bass, Int. J. Ther. Massage Bodywork 5 (2011) 14-17.
URL PMID |
[88] |
A. Ljungqvist, M.P. Schwellnus, N. Bachl, M. Collins, J. Cook, K.M. Khan, N. Maffulli, Y. Pitsiladis, G. Riley, G. Golspink, D. Venter, E.W. Derman, L. Engebretsen, P. Volpi, Clin. Sports Med. 27 (2008) 231-239.
DOI URL PMID |
[89] |
E. Olender, T.I. Uhrynowska, A. Kaminski, Transplant. Proc. 43 (2011) 3137-3141.
DOI URL PMID |
[90] |
G. Yang, H. Lin, B.B. Rothrauff, S. Yu, R.S. Tuan, Acta Biomater. 35 (2016) 68-76.
DOI URL PMID |
[91] |
C. Rinoldi, E. Kije´nska, A. Chlanda, E. Choinska, N. Khenoussi, Ali Tamayol, A. Khademhosseini, W. Swieszkowski, J. Mater. Chem. B 6 (2018) 3116-3127.
DOI URL PMID |
[92] | M. Laranjeira, R.M.A. Domingues, R. Costa-Almeida, R.L. Reis, M.E. Gomes, Small 13 (2017) 1700689-1700701. |
[93] |
C. Zhang, X. Wang, E. Zhang, L. Yang, H. Yuan, W. Tu, H. Zhang, Z. Yin, W. Shen, X. Chen, Y. Zhang, H. Ouyang, Acta Biomater. 66 (2018) 141-156.
DOI URL PMID |
[94] | A. Sensini, C. Gualandi, M.L. Focarete, J. Belcari, A. Zucchelli, L. Boyle, G.C. Reilly, A.P. Kao, G. Tozzi, L. Cristofolini, Biofabrication 11 (2019) 35026-35038. |
[95] |
S.W. Linderman, M. Golman, T.R. Gardner, V. Birman, W.N. Levine, G.M. Genin, S. Thomopoulos, Acta Biomater. 70 (2018) 165-176.
DOI URL PMID |
[96] |
P.S.K. Madhurakkat, J. Lee, T. Ahmad, E.M. Kim, H. Byun, S. Lee, H. Shin, Biomaterials 165 (2018) 79-93.
DOI URL PMID |
[97] |
X.X. Li, R.Y. Cheng, Z.Y. Sun, W. Su, G.Q. Pan, S. Zhao, J.Z. Zhao, W.G. Cui, Acta Biomater. 61 (2017) 204-216.
URL PMID |
[1] | Jianglong Yan, Dandan Xia, Pan Xiong, Yangyang Li, Wenhao Zhou, Qiyao Li, Pei Wang, Yufeng Zheng, Yan Cheng. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities [J]. J. Mater. Sci. Technol., 2021, 71(0): 31-43. |
[2] | Se Heang Oh, June-Ho Byun, So Young Chun, Young-Joo Jang, Jin Ho Lee. Plasmid DNA-loaded asymmetrically porous membrane for guided bone regeneration [J]. J. Mater. Sci. Technol., 2021, 63(0): 161-171. |
[3] | Keke Wang, Weinan Cheng, Zhaozhao Ding, Gang Xu, Xin Zheng, Meirong Li, Guozhong Lu, Qiang Lu. Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration [J]. J. Mater. Sci. Technol., 2021, 63(0): 172-181. |
[4] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[5] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[6] | Dan He, Haiyan Li. Biomaterials affect cell-cell interactions in vitro in tissue engineering [J]. J. Mater. Sci. Technol., 2021, 63(0): 62-72. |
[7] | Yongliang Li, Hua Yuan, Yanbing Chen, Xiaoyu Wei, Kunyan Sui, Yeqiang Tan. Application and exploration of nanofibrous strategy in electrode design [J]. J. Mater. Sci. Technol., 2021, 74(0): 189-202. |
[8] | Rongan He, Haijuan Liu, Huimin Liu, Difa Xu, Liuyang Zhang. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance [J]. J. Mater. Sci. Technol., 2020, 52(0): 145-151. |
[9] | Xiao Lin, Yanjie Bai, Huan Zhou, Lei Yang. Mechano-active biomaterials for tissue repair and regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 227-233. |
[10] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
[11] | Kummara Madhusudana Rao, Anuj Kumar, Sung Soo Han. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications [J]. J. Mater. Sci. Technol., 2018, 34(8): 1371-1377. |
[12] | Erlin Zhang, Yang Ge, Gaowu Qin. Hot deformation behavior of an antibacterial Co-29Cr-6Mo-1.8Cu alloy and its effect on mechanical property and corrosion resistance [J]. J. Mater. Sci. Technol., 2018, 34(3): 523-533. |
[13] | Zongying Han, Zhibin Yang, Minfang Han. Cell-protecting regeneration from anode carbon deposition using in situ produced oxygen and steam: A combined experimental and theoretical study [J]. J. Mater. Sci. Technol., 2018, 34(12): 2375-2383. |
[14] | Pan Ting,Song Wenjing,Cao Xiaodong,Wang Yingjun. 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties [J]. J. Mater. Sci. Technol., 2016, 32(9): 889-900. |
[15] | Hyunsik Bang, Ke Ma, Kai Wei, Chang-Yong Kang, Byoung-Suhk Kim, Mayakrishnan Gopiraman, Jung Soon Lee, Ick-Soo Kim. A Simple Method for the Fabrication of Metallic Copper Nanospheres-Decorated Cellulose Nanofiber Composite [J]. J. Mater. Sci. Technol., 2016, 32(7): 605-610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||