J. Mater. Sci. Technol. ›› 2020, Vol. 54: 181-189.DOI: 10.1016/j.jmst.2020.02.068
• Research Article • Previous Articles Next Articles
D.P. Opraa,*(), S.V. Gnedenkova, A.A. Sokolova,b, A.B. Podgorbunskya, A.Yu. Ustinova,b, V.Yu. Mayorova, V.G. Kuryavyia, S.L. Sinebryukhova
Received:
2019-11-10
Revised:
2020-01-12
Accepted:
2020-02-04
Published:
2020-10-01
Online:
2020-10-21
Contact:
D.P. Opra
D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, A.B. Podgorbunsky, A.Yu. Ustinov, V.Yu. Mayorov, V.G. Kuryavyi, S.L. Sinebryukhov. Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and sodium batteries[J]. J. Mater. Sci. Technol., 2020, 54: 181-189.
Sample | V/Ti ratio | Anatase content | Conductivity, S cm-1 |
---|---|---|---|
pristine | - | 9.5% | 1.54·10-11 |
VTO-1 | 0.011 | 12.3% | 9.29·10-9 |
VTO-2 | 0.034 | 11.6% | 1.70·10-8 |
VTO-3 | 0.049 | 12.9% | 4.89·10-9 |
Table 1 EDX results (atomic ratio), fraction of anatase phase, and conductivity for pristine and V-modified samples.
Sample | V/Ti ratio | Anatase content | Conductivity, S cm-1 |
---|---|---|---|
pristine | - | 9.5% | 1.54·10-11 |
VTO-1 | 0.011 | 12.3% | 9.29·10-9 |
VTO-2 | 0.034 | 11.6% | 1.70·10-8 |
VTO-3 | 0.049 | 12.9% | 4.89·10-9 |
Element | Concentration, at% | Chemical state |
---|---|---|
Ti | 20.8 | Ti-O-Ti Ti-O-V |
V | 1.0 | Ti-O-V V-O-V |
O | 43.4 | Ti-O-Ti Ti-O-V V-O-V |
9.3 | O-H C=O O-C=O | |
C | 1.5 | C=O |
3.2 | O-C=O | |
20.8 | C-C, C-H |
Table 2 XPS data for the VTO-2 sample.
Element | Concentration, at% | Chemical state |
---|---|---|
Ti | 20.8 | Ti-O-Ti Ti-O-V |
V | 1.0 | Ti-O-V V-O-V |
O | 43.4 | Ti-O-Ti Ti-O-V V-O-V |
9.3 | O-H C=O O-C=O | |
C | 1.5 | C=O |
3.2 | O-C=O | |
20.8 | C-C, C-H |
Sample | a (?) | b (?) | c (?) | β (°) | V (?3) | Rwpa | Rpb | χ2c |
---|---|---|---|---|---|---|---|---|
pristine | 12.274(2) | 3.7795(8) | 6.573(1) | 109.59(1) | 287.27(6) | 8.01 | 6.07 | 1.11 |
VTO-1 | 12.301(2) | 3.7861(9) | 6.565(1) | 109.32(2) | 288.55(6) | 8.18 | 6.30 | 1.09 |
VTO-2 | 12.317(2) | 3.797(1) | 6.582(1) | 109.62(2) | 290.00(6) | 8.86 | 6.65 | 1.09 |
VTO-3 | 12.314(3) | 3.744(1) | 6.438(2) | 107.36(3) | 283.31(8) | 10.45 | 8.00 | 1.07 |
Table 3 Structural analysis for pristine and V-doped TiO2-B/anatase samples.
Sample | a (?) | b (?) | c (?) | β (°) | V (?3) | Rwpa | Rpb | χ2c |
---|---|---|---|---|---|---|---|---|
pristine | 12.274(2) | 3.7795(8) | 6.573(1) | 109.59(1) | 287.27(6) | 8.01 | 6.07 | 1.11 |
VTO-1 | 12.301(2) | 3.7861(9) | 6.565(1) | 109.32(2) | 288.55(6) | 8.18 | 6.30 | 1.09 |
VTO-2 | 12.317(2) | 3.797(1) | 6.582(1) | 109.62(2) | 290.00(6) | 8.86 | 6.65 | 1.09 |
VTO-3 | 12.314(3) | 3.744(1) | 6.438(2) | 107.36(3) | 283.31(8) | 10.45 | 8.00 | 1.07 |
Fig. 5. Impedance spectra of pristine and V-doped samples at the room temperature (experimental data are marked by symbols, while solid lines present fitting results).
Fig. 6. (a) Cyclic voltammograms of the VTO-2 electrode for the first ten cycles at a scan rate of 0.1 mV s-1, (b) initial charge/discharge voltage profiles of pristine and V-modified samples at a current load of 150 mA -1, dependence of reversible capacity on applied current load (shown in the figure) for (c) VTO-2 and (d) pristine electrodes, (e) cycling performance of VTO-2 at 3000 mA g-1 between 1 and 3 V (the processes of lithium insertion and extraction are marked, respectively, by open and filled symbols).
Fig. 7. (a) CV curves of the VTO-2 material (b) and initial charge/discharge profiles, (c) cycling performance, (d) rate capability of the pristine and V-doped TiO2-B/anatase electrodes for SIBs.
[1] | C.S. Lewis, Y. Ru Li, L. Wang, J. Li, E.A. Stach, K.J. Takeuchi, A.C. Marschilok, E.S. Takeuchi, S.S. Wong, ACS Sustain. Chem. Eng. 4 (12) (2016) 6299-6312. |
[2] | D.P. Opra, S.V. Gnedenkov, S.L. Sinebryukhov, J. Power Sources 442 (2019), 227225. |
[3] | Y. Li, J. Shen, J. Li, S. Liu, D. Yu, R. Xu, W.-F. Fu, X.-J. Lv, J. Mater. Chem. A 5 (2017) 7055-7063. |
[4] | C. Chen, X. Hu, B. Zhang, L. Miao, Y. Huang, J. Mater. Chem. A 3 (2015) 22591-22598. |
[5] |
M. Fehse, E. Ventosa, ChemPlusChem 80 (2015) 785-795.
URL PMID |
[6] | A.V. Ushakov, S.V. Makhov, N.A. Gridina, A.V. Ivanishchev, I.M. Gamayunova, Monatsh. Chem. 150 (2019) 499-509. |
[7] | Y. Zheng, B. Liu, P. Cao, H. Huang, J. Zhang, G. Zhou, J. Mater. Sci. Technol. 35 (2019) 667-673. |
[8] | J. Lee, J.K. Lee, K.Y. Chung, H.-G. Jung, H. Kim, J. Mun, W. Choi, Electrochim. Acta 200 (2016) 21-28. |
[9] |
G. Liu, H.-H. Wu, Q. Meng, T. Zhang, D. Sun, X. Jin, D. Guo, N. Wu, X. Liu, J. -K.Kim, Nanoscale Horiz. (2019).
DOI URL PMID |
[10] |
A.G. Dylla, G. Henkelman, K.J. Stevenson, Acc. Chem. Res. 46 (5) (2013) 1104-1112.
URL PMID |
[11] |
W. Yan, Y. Zou, H. Zhou, L. Wang, X. Meng, J. Nanopart. Res. 19 (2017), article ID 192.
DOI URL PMID |
[12] | A.G. Dylla, P. Xiao, G. Henkelman, K.J. Stevenson, J. Phys. Chem. Lett. 3 (15) (2012) 2015-2019. |
[13] |
M. Kang, Y. Ruan, Y. Lu, L. Luo, J. Huang, J.-M. Zhang, Z. Hong, J. Mater. Chem. A 7 (2019) 16937-16946.
DOI URL |
[14] | M. Søndergaard, K.J. Dalgaard, E.D. Bøjesen, K. Wonsyld, S. Dahl, B.B. Iversen, J. Mater. Chem. A 3 (2015) 18667-18674. |
[15] | M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, M. Graetzel, Chem. Mater. 17 (5) (2005) 1248-1255. |
[16] | F. Xie, J. Zhu, Y. Li, D. Shen, A. Abate, M. Wei, J. Power Sources 415 (2019) 8-14. |
[17] | M. Cao, L. Tao, X. Lv, Y. Bu, M. Li, H. Yin, M. Zhu, Z. Zhong, Y. Shen, M. Wang, J. Power Sources 3 96 (2018) 327-334. |
[18] | J.P. Huang, D.D. Yuan, H.Z. Zhang, Y.L. Cao, G.R. Li, H.X. Yang, X.P. Gao, RSC Adv. 3 (2013) 12593-12597. |
[19] | Z. Guan, X. Wang, T. Li, Q. Zhu, M. Jia, B. Xu, J. Mater. Sci. Technol. 35 (2019) 1977-1981. |
[20] | Y. Meng, D. Wang, Y. Wei, K. Zhu, Y. Zhao, X. Bian, F. Du, B. Liu, Y. Gao, G. Chen, J. Power Sources 346 (2017) 134-142. |
[21] | Y. Liu, M. Guo, Z. Liu, Q. Wei, M. Wei, J. Mater. Chem. A 6 (2018) 1196-1200. |
[22] | X. Yan, W. Liu, W. Yan, D. Sun, Y. Jin, J. Wang, L. Xiang, H. Munakata, K. Kanamura, Electrochim. Acta 191 (2016) 661-668. |
[23] | W. Zhuang, L. Lu, W. Li, R. An, X. Feng, X. Wu, Y. Zhu, X. Lu, Chin. J. Chem. Eng. 23 (2015) 583-589. |
[24] | W. Zhou, L. Gai, P. Hu, J. Cui, X. Liu, D. Wang, G. Li, H. Jiang, D. Liu, H. Liu, J. Wang, CrystEngComm 13 (2011) 6643-6649. |
[25] | Z. Zhang, Z. Zhou, S. Nie, H. Wang, H. Peng, G. Li, K. Chen, J. Power Sources 267 (2014) 388-393. |
[26] | E. Ventosa, B. Mei, W. Xia, M. Muhler, W. Schuhmann, ChemSusChem 6 (2013) 1312-1315. |
[27] | R. Grosjean, M. Fehse, S. Pigeot-Remy, L. Stievano, L. Monconduit, S. Cassaignon, J. Power Sources 278 (2015) 1-8. |
[28] | Y. Zhang, Y. Meng, K. Zhu, H. Qiu, Y. Ju, Y. Gao, F. Du, B. Zou, G. Chen, Y. Wei, ACS Appl. Mater. Interfaces 8 (12) (2016) 7957-7965. |
[29] | M. Amirsalehi, M. Askari, J. Mater. Sci. 29 (2018), 13068. |
[30] |
D.P. Opra, S.V. Gnedenkov, S.L. Sinebryukhov, A.Yu. Ustinov, A.B. Podgorbunsky, A.A. Sokolov, Russ. J. Inorg. Chem. 64 (2016) 680-687.
DOI URL |
[31] | Rigaku Corporation, SmartLab Software, 2015, Tokyo, Japan. |
[32] | V. Petricek, M. Dusek, L. Palatinus, Z. Kristallogr. 229 (5) (2014) 345-352. |
[33] |
J. Xie, D. Jiang, M. Chen, D. Li, J. Zhu, X. Lu, C. Yan, Colloid. Surface. A 372 (2010) 107-114.
DOI URL |
[34] |
M. Jing, J. Li, C. Han, S. Yao, J. Zhang, H. Zhai, L. Chen, X. Shen, K. Xiao, R. Soc. Open Sci. 4 (2017), 170323.
DOI URL PMID |
[35] | F. Lucassen, M. Koch-Müller, M. Taran, G. Franz, Am. Miner. 98 (2013) 7-18. |
[36] |
G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Relat. Phenom. 135 (2004) 167-175.
DOI URL |
[37] | P. Benjwal, K.K. Kar, RSC Adv. 5 (2015) 98166-98176. |
[38] | M.C. Sekhar, B.P. Reddy, S.V.P. Vattikuti, G. Shanmugam, C.-H. Ahn, S.-H. Park, J. Clust. Sci. 29 (2018) 1255-1267. |
[39] | X. Lu, L. Liu, X. Xie, Y. Cui, E.E. Oguzie, F. Wang, J. Mater. Sci. Technol. 37 (2020) 55-63. |
[40] |
D. Yang, H. Liu, Z. Zheng, Y. Yuan, J.C. Zhao, E.R. Waclawik, X. Ke, H. Zhu, J. Am. Chem. Soc. 131 (2009) 17885-17893.
DOI URL PMID |
[41] | J. Chen, X. Zhou, C. Mei, J. Xu, C.-P. Wong, Electrochim. Acta 224 (2017) 446-451. |
[42] | T. Beuvier, M. Richard-Plouet, M. Mancini-Le Granvalet, T. Brousse, O. Crosnier, L. Brohan, Inorg. Chem. 49 (2010) 8457-8464. |
[43] |
Y. Lei, J. Li, Z. Wang, J. Sun, F. Chen, H. Liu, X. Ma, Z. Liu, Nanoscale 9 (2017) 4601-4609.
DOI URL PMID |
[44] | D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, V.Yu. Mayorov, S.L. Sinebryukhov, Scr. Mater. 165 (2019) 150-153. |
[45] | M. Madian, A. Eychmüller, L. Giebeler, Batteries 4 (2018), Article ID 7. |
[46] | S. Brutti, V. Gentili, H. Menard, B. Scrosati, P.G. Bruce, Adv. Energy Mater. 2 (2012) 322-327. |
[47] | C.S. Lewis, Y. Ru Li, L. Wang, J. Li, E.A. Stach, K.J. Takeuchi, A.C. Marschilok, E.S. Takeuchi, S.S. Wong, ACS Sustain. Chem. Eng. 4 (2016) 6299-6312. |
[48] | J.M. Amarilla, E. Morales, J. Sanz, I. Sobrados, P. Tartaj, J. Power Sources 273 (2015) 368-374. |
[49] |
G. Hasegawa, M. Tanaka, J.J.M. Vequizo, A. Yamakata, H. Hojo, M. Kobayashi, M. Kakihana, M. Inada, H. Akamatsu, K. Hayashi, Nanoscale 11 (2019) 1442-1450.
DOI URL PMID |
[50] | Y. Zhou, Q. Zhu, J. Tian, F. Jiang, Nanomater 7 (9) (2017), Article ID 252. |
[51] | Y. Yang, S. Liao, W. Shi, Y. Wu, R. Zhang, S. Leng, RSC Adv. 7 (2017) 10885-10890. |
[52] | L. Wu, D. Bresser, D. Buchholz, S. Passerini, J. Electrochem. Soc. 162 (2015) A3052-A3058. |
[53] |
J.A. Dawson, J. Robertson, J. Phys. Chem. C 120 (2016) 22910-22917.
DOI URL |
[54] | J.-Y. Liao, B. De Luna, A. Manthiram, J. Mater. Chem. A 4 (2016) 801-806. |
[1] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[2] | Bhavana Joshi, Edmund Samuel, Yong-il Kim, Govindasami Periyasami, Mostafizur Rahaman, Sam S. Yoon. Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 67(0): 116-126. |
[3] | Swadipta Roy, C.V. Ramana. Effect of sintering temperature on the chemical bonding, electronic structure and electrical transport properties of β-Ga1.9Fe0.1O3 compounds [J]. J. Mater. Sci. Technol., 2021, 67(0): 135-144. |
[4] | Chen Chen, Ying Huang, Zhuoyue Meng, Mengwei Lu, Zhipeng Xu, Panbo Liu, Tiehu Li. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage [J]. J. Mater. Sci. Technol., 2021, 76(0): 11-19. |
[5] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[6] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[7] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[8] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[9] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
[10] | Wei Feng, Nian Liu, Lingling Gao, Qian Zhou, Luofeng Yu, Xiaoting Ye, Jingjing Huo, Xiao Huang, Peng Li, Wei Huang. Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines [J]. J. Mater. Sci. Technol., 2021, 69(0): 188-199. |
[11] | Jie Guo, Xinguo Zhao, Naikun Sun, Xiaofei Xiao, Wei Liu, Zhidong Zhang. Tunable quantum Shubnikov-de Hass oscillations in antiferromagnetic topological semimetal Mn-doped Cd3As2 [J]. J. Mater. Sci. Technol., 2021, 76(0): 247-253. |
[12] | Haiyang Yu, Zhenzhu Wang, Jiangfeng Ni, Liang Li. Freestanding nanosheets of 1T-2H hybrid MoS2 as electrodes for efficient sodium storage [J]. J. Mater. Sci. Technol., 2021, 67(0): 237-242. |
[13] | Zhengkun Xie, Xiaowei An, Zhijun Wu, Xiyan Yue, Jiajia Wang, Xiaogang Hao, Abuliti Abudula, Guoqing Guan. Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 119-127. |
[14] | Thanh-Tung Le, Xiao Liu, Peijun Xin, Qing Wang, Chunyan Gao, Ye Wu, Yong Jiang, Zhangjun Hu, Shoushuang Huang, Zhiwen Chen. Phosphorus-doped Fe7S8@C nanowires for efficient electrochemical hydrogen and oxygen evolutions: Controlled synthesis and electronic modulation on active sites [J]. J. Mater. Sci. Technol., 2021, 74(0): 168-175. |
[15] | Shi Tao, Wei Zhou, Dajun Wu, Zhicheng Wang, Bin Qian, Wangsheng Chu, Augusto Marcelli, Li Song. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 230-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||