J. Mater. Sci. Technol. ›› 2020, Vol. 53: 61-65.DOI: 10.1016/j.jmst.2020.04.027
• Research Article • Previous Articles Next Articles
T. Caia,b, K.Q. Lib,c, Z.J. Zhangb, P. Zhangb, R. Liub, J.B. Yangb,c, Z.F. Zhangb,c,*()
Received:
2020-01-11
Revised:
2020-02-14
Accepted:
2020-02-21
Published:
2020-09-15
Online:
2020-09-21
Contact:
Z.F. Zhang
T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations[J]. J. Mater. Sci. Technol., 2020, 53: 61-65.
Fig. 1. The energy mapping with the locational variation of many solute atoms. The relative energy mapping of 6 sizes of supercell for (a) Al solute atoms, (b) Mn solute atoms.
Fig. 2. The energy mapping with the locational variation of many solute atoms: (a) A representative energy mapping with a high energy barrier due to Mn atom locating in SF; (b) The relative energy mapping of 7 solute atoms (Ti, Mn, Fe, Ni, Zr, Ag and Au) illustrating a similar profile with (a); (c) A representative energy mapping with a low energy well due to Al atom locating in SF; (d) The relative energy mapping of 9 solute atoms (Mg, Al, Si, Zn, Ga, Ge, Cd, Sn and Pb) illustrating a similar profile with (c).
Alloys | Energy barrier (meV) | Relative energy (meV) | Fluctuation energy (meV) | Pseudo-SFE (mJ/m2) |
---|---|---|---|---|
CuTi | 35.72 | 41.14 | -5.42 | 104.79 |
CuMn | 16.41 | 21.27 | -4.87 | 72.59 |
CuFe | 15.96 | 20.76 | -4.8 | 76.64 |
CuNi | 14.08 | 15.31 | -1.23 | 77.36 |
CuZr | 36.46 | 41.7 | -5.24 | 107.72 |
CuAg | 7.41 | 7.21 | 0.2 | 66.34 |
CuAu | 12.74 | 15.84 | -3.11 | 77.95 |
CuMg | -25.03 | -22.59 | -2.45 | 27.85 |
CuAl | -39.71 | -35.06 | -4.65 | 2.42 |
CuSi | -76.4 | -71.21 | -5.19 | -51.39 |
CuZn | -22.81 | -20.05 | -2.77 | 21.81 |
CuGa | -42.94 | -38.64 | -4.3 | -3.29 |
CuGe | -79.58 | -74.88 | -4.7 | -57.81 |
CuCd | -23.9 | -21.41 | -2.49 | 24.2 |
CuSn | -80.83 | -74.8 | -6.03 | -56.81 |
CuPb | -81.34 | -75.69 | -5.65 | -58.78 |
Table 1 The energy barrier (meV), relative energy (meV), fluctuation energy (meV) and pseudo-stacking fault energy (SFE) (mJ/m2) of different Cu alloys.
Alloys | Energy barrier (meV) | Relative energy (meV) | Fluctuation energy (meV) | Pseudo-SFE (mJ/m2) |
---|---|---|---|---|
CuTi | 35.72 | 41.14 | -5.42 | 104.79 |
CuMn | 16.41 | 21.27 | -4.87 | 72.59 |
CuFe | 15.96 | 20.76 | -4.8 | 76.64 |
CuNi | 14.08 | 15.31 | -1.23 | 77.36 |
CuZr | 36.46 | 41.7 | -5.24 | 107.72 |
CuAg | 7.41 | 7.21 | 0.2 | 66.34 |
CuAu | 12.74 | 15.84 | -3.11 | 77.95 |
CuMg | -25.03 | -22.59 | -2.45 | 27.85 |
CuAl | -39.71 | -35.06 | -4.65 | 2.42 |
CuSi | -76.4 | -71.21 | -5.19 | -51.39 |
CuZn | -22.81 | -20.05 | -2.77 | 21.81 |
CuGa | -42.94 | -38.64 | -4.3 | -3.29 |
CuGe | -79.58 | -74.88 | -4.7 | -57.81 |
CuCd | -23.9 | -21.41 | -2.49 | 24.2 |
CuSn | -80.83 | -74.8 | -6.03 | -56.81 |
CuPb | -81.34 | -75.69 | -5.65 | -58.78 |
Fig. 3. Illustration of 9 solute atoms (Mg, Al, Si, Zn, Ga, Ge, Cd, Sn and Pb) with Suzuki segregation and 7 solute atoms (Ti, Mn, Fe, Ni, Zr, Ag and Au) without Suzuki segregation according to the plus-minus of energy barrier.
Fig. 4. Illustration of 9 solute atoms (Mg, Al, Si, Zn, Ga, Ge, Cd, Sn and Pb) tailoring the stacking fault energy (SFE) and occurrence of Suzuki segregation and vice versa.
Fig. 5. Schematic illustration for the principles of the stacking fault energy (SFE) varying in binary Cu alloys. Those solute atoms with the s and sp electronic configuration can lower SFE while the others with the ds electronic configuration cannot and the underlying factor should be the similarity and difference between the valences electronic structure of solute and Cu atoms.
[1] |
X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, Y.T. Zhu, Appl. Phys. Lett. 83 (2003) 632-634.
DOI URL |
[2] | Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon, Appl. Phys. Lett. 89 (2006), 121906. |
[3] |
X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, Z.F. Zhang, Appl. Phys. Lett. 92 (2008), 201915.
DOI URL |
[4] |
P. Zhang, X.H. An, Z.J. Zhang, S.D. Wu, S.X. Li, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Scr. Mater. 67 (2012) 871-874.
DOI URL |
[5] |
W.Z. Han, G.M. Cheng, S.X. Li, S.D. Wu, Z.F. Zhang, Phys. Rev. Lett. 101 (2008), 115505.
DOI URL PMID |
[6] |
M.A. Meyers, D.J. Benson, O. Vohringer, B.K. Kad, Q. Xue, H.H. Fu, Mater. Sci. Eng. A 322 (2002) 194-216.
DOI URL |
[7] | J.A. Venables, Deformation Twinning, Gordon and Breach, New York, 1963, pp. 77-111. |
[8] |
W.Z. Han, Z.F. Zhang, S.D. Wu, S.X. Li, Philos. Mag. 88 (2008) 3011-3029.
DOI URL |
[9] |
A. Dumay, J.P. Chateau, S. Allan, S. Miget, O. Bouaziz, Mater. Sci. Eng. A 483-484 (2008) 184-187.
DOI URL |
[10] | O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plasticity 16 (2000) 1391-1409. |
[11] |
D. Canadinc, H. Sheitoglu, H.J. Maier, Y.L. Chumlyyakov, Acta Mater. 53 (2005) 1831-1842.
DOI URL |
[12] | K.T. Park, K.G. Jin, S.H. Ho, S.W. Hwang, K. Choi, C.S. Lee, Mater. Sci. Eng. A 527 (2010) 3651-3661. |
[13] | H. Suzuki, Sci. Rep. Res. Inst. Tohoku Univ. A 4 (1952) 455-463. |
[14] |
L. Lu, X. Chen, X. Huang, K. Lu, Science 323 (2009) 607-610.
DOI URL PMID |
[15] |
Y.J. Xu, D.Q. Qi, K. Du, C.Y. Cui, H.Q. Ye, Scr. Mater. 87 (2014) 37-40.
DOI URL |
[16] |
T. Hickel, S. Sandlöbes, R.K.W. Marceau, A. Dick, I. Bleskov, J. Neugebauer, D. Raabe, Acta Mater. 75 (2014) 147-155.
DOI URL |
[17] |
G.B. Viswanathan, R. Shi, A. Genc, V.A. Vorontsov, L. Kovarik, C.M.F. Rae, M.J. Mills, Scr. Mater. 94 (2015) 5-8.
DOI URL |
[18] |
Z.Q. Yang, M.F. Chisholm, G. Duscher, X.L. Ma, S.J. Pennycook, Acta Mater. 61 (2013) 350-359.
DOI URL |
[19] | H. Saka, Philos. Mag. Lett. 94 (2014) 455-459. |
[20] | P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Computer Code WIEN2k, An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2013. |
[21] | M.H. Loretto, Philos. Mag. 12 (1965) 1087-1090. |
[22] | H. Suzuki, T. Ninomiya, K. Sumino, S. Takeuchi, Takeuchi, Dislocations in Solids, University Tokyo, Tokyo, 1984. |
[23] | B.G. Mendis, I.P. Jones, R.E. Smallman, J. Microsc. 53 (2004) 311-323. |
[24] | J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd ed., Krieger Publishing, Malabar, U.K, 1992. |
[25] | T. Cai, Z.J. Zhang, P. Zhang, J.B. Yang, Z.F. Zhang, J. Appl. Phys. 116 (2014), 163512. |
[26] | L.E. Murr, Interfacial Phenomena in Metals and Alloys, Addison Wesley, Reading, 1975. |
[27] |
I.I. Naumov, R.J. Hemley, Phys. Rev. Lett. 114 (2015), 156403.
URL PMID |
[28] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI URL PMID |
[1] | Xiao Zhang, Pei Wang, Dianzhong Li, Yiyi Li. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 180-188. |
[2] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[3] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[4] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[5] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[6] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[7] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[8] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[9] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[10] | Xinglong An, Hao Zhang, Song Ni, Xiaoqin Ou, Xiaozhou Liao, Min Song. Effects of temperature and alloying content on the phase transformation and {10$\bar{1}$1} twinning in Zr during rolling [J]. J. Mater. Sci. Technol., 2020, 41(0): 76-80. |
[11] | K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang, Z.F. Zhang. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals [J]. J. Mater. Sci. Technol., 2020, 57(0): 159-171. |
[12] | Xinzeng Liang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-xMn1.5In0.5Cox alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 31-41. |
[13] | Zhe Xue, Xinyu Zhang, Jiaqian Qin, Mingzhen Ma, Riping Liu. Controlling the strength of Zr (10 $\bar{1}$ 2) grain boundary by nonmetallic impurities doping: A DFT study [J]. J. Mater. Sci. Technol., 2020, 36(0): 140-148. |
[14] | Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36(0): 91-96. |
[15] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48(0): 146-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||