J. Mater. Sci. Technol. ›› 2020, Vol. 53: 53-60.DOI: 10.1016/j.jmst.2020.03.035
• Research Article • Previous Articles Next Articles
Cuiyu Zhanga, Xuan Gea, Qiaodan Hua,*(), Fan Yangb,*(
), Pingsheng Laia, Caijuan Shic, Wenquan Lua, Jianguo Lia
Received:
2020-01-22
Revised:
2020-03-02
Accepted:
2020-03-02
Published:
2020-09-15
Online:
2020-09-21
Contact:
Qiaodan Hu,Fan Yang
Cuiyu Zhang, Xuan Ge, Qiaodan Hu, Fan Yang, Pingsheng Lai, Caijuan Shi, Wenquan Lu, Jianguo Li. Atomic scale structural analysis of liquid immiscibility in binary silicate melt: A case of SiO2‒TiO2 system[J]. J. Mater. Sci. Technol., 2020, 53: 53-60.
Fig. 1. (a) Equilibrium phase diagram of the SiO2-TiO2 binary system [26]. The two compositions and the selected temperatures for investigation are indicated by the arrows in the figure. The top-left inset figure is the SEM image of the SiO2-rich composition (70SiO2?30TiO2) after liquid immiscibility and quenching to room temperature, and the colored figure below is the associated EDS mapping of the selected area. SEM and EDS show that spherical TiO2-rich nodules are dispersed in the SiO2-rich matrix with sharp interfaces, indicating a nucleation-growth liquid-liquid separation mechanism. (b) Schematic diagram of the temperature-time profile in the diffraction experiment. The inset figure illustrates the aerodynamic levitation setup equipped with in-situ HEXRD.
Fig. 2. (a) Fiber-Ziman structure factors S(Q) of the 70SiO2?30TiO2 melt at different temperatures. (b) The pair distribution functions g(r) obtained by Fourier transform of the structure factors. (c) The total distribution functions T(r) derived by g(r): $T(r)=4\text{ }\!\!\pi\!\!\text{ }{{\rho }_{0}}rg(r)$. (d) The calculated weighting factors Wij of each atomic pair in this rich-SiO2 melt contributing to the total X-ray scattering intensity.
Temperature | Si-O CN | Ti-O BL (?) | Ti-O CN | Si-Si BL (?) | Si-Si CN | Ti-Ti BL (?) | Ti-Ti CN |
---|---|---|---|---|---|---|---|
2493 K | 3.25 | 1.87 | 4.59 | 2.92 | 5.99 | 3.61 | 7.41 |
2223 K | 3.67 | 1.86 | 4.23 | 2.90 | 5.50 | 3.59 | 7.71 |
1873 K | 3.62 | 1.86 | 5.47 | 2.85 | 4.00 | 3.68 | 8.55 |
Table 1 The statistically average structure parameters of cation-oxygen and cation?cation pairs in the 70SiO2-30TiO2 melt. These data were calculated based on the peaks splitting and fitting results shown in Fig. 2(c).
Temperature | Si-O CN | Ti-O BL (?) | Ti-O CN | Si-Si BL (?) | Si-Si CN | Ti-Ti BL (?) | Ti-Ti CN |
---|---|---|---|---|---|---|---|
2493 K | 3.25 | 1.87 | 4.59 | 2.92 | 5.99 | 3.61 | 7.41 |
2223 K | 3.67 | 1.86 | 4.23 | 2.90 | 5.50 | 3.59 | 7.71 |
1873 K | 3.62 | 1.86 | 5.47 | 2.85 | 4.00 | 3.68 | 8.55 |
Fig. 3. (a) The Fiber-Ziman structure factors S(Q) of the 8.33SiO2-91.67TiO2 melt at different temperatures. S(Q) for pure TiO2 adopted from Alderman et al. [33] is also plotted for comparison. (b) The calculated weighting factors Wij of each atomic pair in this TiO2-rich melt. The contribution of Si?Si is extremely low and thus not shown here. (c) The temperature dependence of total distribution functions. (d) Dependence of the quality-of-fit parameter Rχ on the upper cutoff distance rk, max for the TiO2-rich melt at the three selected temperatures.
Fig. 4. Schematic diagrams of the structural evolution during liquid immiscibility: (a) Homogeneous liquid separates into heterogeneous phases when it is cooled below the binodal dome; (b) the structure evolution of the TiO2-rich nodules from stable to metastable state.
[1] |
A.B. Thompson, M. Aerts, A.C. Hack, Rev. Mineral. Geochem. 65 (2007) 99-127.
DOI URL |
[2] | N.V. Roosbroek, N.V. Roosbroek, C. Hamann, S. McKibbin, A. Greshake, R. Wirth, L. Pittarello, L. Hecht, P. Claeys, V. Debaille, N. Geochim. Cosmochim. Acta 197 (2017) 378-395. |
[3] |
S.A.H. Sander, M. Weiss, R. Denecke, D. Enke, H. Roggendorf, Adv. Eng. Mater. 21 (2019), 1900187.
DOI URL |
[4] |
R. Jiménez, Y. Guo, J.M.M. Rosalesa, S. Sugitaa, W. Redingtonb, M. J.Pomeroy, S. Hampshireb, J. Eur. Ceram. Soc. 36 (2016) 3523-3530.
DOI URL |
[5] |
H. Wei, J. Ma, L. Li, J.Q. Li, J. Li, G. Ou, W. Yu, C.S. Zhao, J.Y. Li, M.G. Song, Z.J. Peng, H. Wu, Nano Res. 9 (2016) 3839-3847.
DOI URL |
[6] |
P.F. James, J. Mater. Sci. 10 (1975) 1802-1825.
DOI URL |
[7] |
S.S. Kim, J.Y. Parka, T.H. Sanders, J. Alloys Compd. 321 (2001) 84-90.
DOI URL |
[8] |
S.S. Kim, T.H. Sanders, J. Am. Ceram. Soc. 82 (1999) 1901-1907.
DOI URL |
[9] |
D. Bouttes, E. Gouillart, E. Boller, D. Dalmas, D. Vandembroucq, Phys. Rev. Lett. 112 (2014), 245701.
DOI URL PMID |
[10] |
T. Koga, K. Kawasaki, Phys. A 196 (1993) 389-415.
DOI URL |
[11] |
D. Bouttes, O. Lambert, C. Claireaux, W. Woelffel, D. Dalmas, E. Gouillart, P. Lhuissier, L. Salvo, E. Boller, D. Vandembroucq, Acta Mater. 92 (2015) 233-242.
DOI URL |
[12] |
K.E.I. Katsumata, Y. Kameshima, K. Okada, A. Yasumor, Mater. Res. Bull. 39 (2004) 1131-1139.
DOI URL |
[13] |
I.V. Veksler, Chem. Geol. 210 (2004) 7-31.
DOI URL |
[14] |
P. Hudon, D.R. Baker, J. Non-Cryst. Solids 303 (2002) 299-345.
DOI URL |
[15] |
Y. Gueguen, P. Houizot, F. Célarié, M. Chen, A. Hirata, Y. Tan, M. Allix, S. Chenu, C. Roux-Langlois, T. Rouxel, J. Am. Ceram. Soc. 100 (2017) 1982-1993.
DOI URL |
[16] |
P. Hudon, D.R. Baker, J. Non-Cryst. Solids 303 (2002) 346-353.
DOI URL |
[17] |
W. Haller, D.H. Blackburn, J.H. Simmons, J. Am. Ceram. Soc. 57 (1974) 120-126.
DOI URL |
[18] |
V. McGahay, M. Tomozawa, J. Non-Cryst. Solids 109 (1989) 27-34.
DOI URL |
[19] |
E.M. Levin, J. Am. Ceram. Soc. 50 (1967) 29-38.
DOI URL |
[20] | A. Dietzel, Z. Elektrochem, Angew. Phys. Chem. 48 (1942) 9-23. |
[21] |
E.M. Levin, S. Block, J. Am. Ceram. Soc. 40 (1957) 95-106.
DOI URL |
[22] |
V. Mc Gahay, M. Tomozawa, J. Non-Cryst. Solids 159 (1993) 246-252.
DOI URL |
[23] |
Y.B. Wang, T. Sakamaki, L.B. Skinner, Z.H.U. Jian, T. Yu, Y. Kono, C.Y. Park, G.Y. Shen, M.L. Rivers, S.R. Sutton, Nat. Commun. 5 (2014) 3241.
URL PMID |
[24] |
V. Petkov, S.J.L. Billinge, S.D. Shastri, B. Himmel, Phys. Rev. Lett. 85 (2000) 3436.
DOI URL PMID |
[25] |
L. Zhang, Phys. Chem. Chem. Phys. 13 (2011) 21009-21015.
DOI URL PMID |
[26] | Christian DeCapitani, M. Kirschen, Geochim. Cosmochim. Acta 62 (1998) 3753-3763. |
[27] | M. Wilding, C. Benmore, R. Weber, O. Alderman, A. Tamalonis, P.F. McMillan, M. Wilson, M.C.C. Ribiero, J. Parise, J. Non-Cryst, J. Non-Cryst. Solids 3 (2019), 100027. |
[28] |
L.B. Skinner, C.J. Benmore, J.K.R. Weber, M.A. Williamson, A. Tamalonis, A. Hebden, T. Wiencek, O.L.G. Alderman, M. Guthrie, L. Leibowitz, J.B. Parise, Science 346 (2014) 984-987.
DOI URL PMID |
[29] | X. Ge, X.W. Xu, Q.D. Hu, W.Q. Lu, L. Yang, S. Cao, M.X. Xia, J.G. Li, J. Mater. Sci. Technol. 35 (2019) 1636-1643. |
[30] |
Q. Mei, C.J. Benmore, J.K.R. Weber, Phys. Rev. Lett. 98 (2007), 057802.
DOI URL PMID |
[31] |
X. Ge, Q. Hu, W. Lu, S. Cao, L. Yang, M. Xu, M. Xia, J. Li, Sci. Rep. 9 (2019) 7207.
DOI URL PMID |
[32] |
L.B. Skinner, C.J. Benmore, J.K.R. Weber, M.C. Wilding, S.K. Tumberc, J.B. Parise, Phys. Chem. Chem. Phys. 15 (2013) 8566-8572.
DOI URL PMID |
[33] | O.L.G. Alderman, L.B. Skinner, C.J. Benmore, A. Tamalonis, J.K.R. Weber, Phys. Rev. B 90 (2014), 094204. |
[34] | R.D.T. Shannon, C.T. Prewitt, Acta Cryst. 25 (1969) 925-946. |
[35] |
R.N. Mead, G. Mountjoy, J. Phys. Chem. B 110 (2006) 14273-14278.
DOI URL PMID |
[36] | M.C. Wilding, C.J. Benmore, J.K.R. Weber, J. Mater. Sci. 43 (2008) 4707-4713. |
[37] |
J.W.E. Drewitt, C. Sanloup, A. Bytchkov, S. Brassamin, L. Hennet, Phys. Rev. B 87 (2013), 224201.
DOI URL |
[38] |
L. Henneta, I. Pozdnyakova, A. Bytchkov, D.L. Price, J. Chem. Phys. 126 (2007), 074906.
DOI URL PMID |
[39] |
B. Vessal, G.N. Greaves, P.T. Marten, A.V. Chadwick, R. Mole, S.H. Walter, Nature 356 (1992) 504-506.
DOI URL |
[40] |
O.L.G. Alderman, A.C. Hannon, D. Holland, S. Feller, G. Lehr, A.J. Vitale, U. Hoppe, M.V. Zimmermane, A. Watenphule, Phys. Chem. Chem. Phys. 15 (2013) 8506.
DOI URL PMID |
[41] |
O.L.G. Alderman, M. Liška, J. Macháček, J. Benmore, A. Lin, A. Tamalonis, J.K.R. Weber, J. Phys. Chem. C 120 (2016) 553-560.
DOI URL |
[42] |
O.L.G. Alderman, C.J. Benmore, A. Tamalonis, S. Sendelbach, S. Heald, R. Weber, J. Phys. Chem. C 120 (2016) 26974-26985.
DOI URL |
[43] |
S. Kohara, J. Akola, L. Patrikeev, M. Ropo, K. Ohara, M. Itou, A. Fujiwara, J. Yahiro, J.T. Okada, T. Ishikawa, A. Mizuno, A. Masuno, Y. Watanabe, T. Usuki, Nat. Commun. 5 (2014) 5892.
URL PMID |
[44] |
J. Mavracič, F.C. Mocanu, V.L. Deringer, G. Csányi, S.R. Elliott, J. Phys. Chem. Lett. 9 (2018) 2985-2990.
DOI URL PMID |
[45] |
V.R. Mastelaro, E.D. Zanotto, N. Lequeux, R. Cortès, J. Non-Cryst. Solids 262 (2000) 191-199.
DOI URL |
[46] |
Y.Y. Li, T. Ishigaki, J. Cryst. Growth 242 (2002) 511-516.
DOI URL |
[47] |
N. Jakse, M. Bouhadja, J. Kozaily, J.W.E. Drewitt, L. Hennet, D.R. Neuville, H.E. Fischer, V. Cristiglio, A. Pasturel, Appl. Phys. Lett. 101 (2012), 201903.
DOI URL |
[48] |
C.J. Benmore, J.K.R. Weber, M.C. Wilding, J. Du, J.B. Parise, Phys. Rev. B 82 (2010), 224202.
DOI URL |
[1] | Liao Yu, Qiaodan Hu, Zongye Ding, Fan Yang, Wenquan Lu, Naifang Zhang, Sheng Cao, Jianguo Li. Effect of cooling rate on the 3D morphology of the proeutectic Al3Ni intermetallic compound formed at the Al/Ni interface after solidification [J]. J. Mater. Sci. Technol., 2021, 69(0): 60-68. |
[2] | Anil Kunwar, Yuri Amorim Coutinho, Johan Hektor, Haitao Ma, Nele Moelans. Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface [J]. J. Mater. Sci. Technol., 2020, 59(0): 203-219. |
[3] | Zongye Ding, Qiaodan Hu, Wenquan Lu, Xuan Ge, Sheng Cao, Siyu Sun, Tianxing Yang, Mingxu Xia, Jianguo Li. In-situ study on hydrogen bubble evolution in the liquid Al/solid Ni interconnection by synchrotron radiation X-ray radiography [J]. J. Mater. Sci. Technol., 2019, 35(7): 1388-1392. |
[4] | Mahbubur Rahman M.,Jiang Zhong-Tao,Yin Chun-Yang,Siang Chuah Lee,Lee Hooi-Ling,Amri Amun,Goh Bee-Min,J. Wood Barry,Creagh Chris,Mondinos Nicholas,Altarawneh Mohmmednoor,Z. Dlugogorski Bogdan. Structural Thermal Stability of Graphene Oxide-Doped Copper-Cobalt Oxide Coatings as a Solar Selective Surface [J]. J. Mater. Sci. Technol., 2016, 32(11): 1179-1191. |
[5] | Yuewu PAN, Jie YU, Zhan HU, Hongdong LI, Qiliang CUI, Guangtian ZOU. Pressure-Induced Structural Transitions of the Zinc Sulfide Nano-particles with Different Sizes [J]. J Mater Sci Technol, 2007, 23(02): 193-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||