J. Mater. Sci. Technol. ›› 2020, Vol. 53: 140-145.DOI: 10.1016/j.jmst.2020.02.084
• Research Article • Previous Articles Next Articles
Geng Hea,b, Feifei Qinc, Chunxiang Xuc, Chinhua Wanga,b, Yu Xud,e,*(
), Bing Caoa,b,**(
), Ke Xud,e,*(
)
Received:2019-12-23
Revised:2020-02-25
Accepted:2020-02-27
Published:2020-09-15
Online:2020-09-21
Contact:
Yu Xu,Bing Cao,Ke Xu
Geng He, Feifei Qin, Chunxiang Xu, Chinhua Wang, Yu Xu, Bing Cao, Ke Xu. Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene[J]. J. Mater. Sci. Technol., 2020, 53: 140-145.
Fig. 1. SEM images of (a) top view and (b) side view morphology of hexagonal GaN microdisk grown on graphene films. The top of the microdisk is rough and the semi-polar surface is present at the edge. (c) Raman spectrum of GaN/MLG/sapphire. (d) CL and PL spectra of the GaN microdisk, respectively.
Fig. 2. (a) Schematic diagram of μ-PL system. Illustration is an experimental optical microscope image of μ-PL. (b) The μ-PL spectrum of GaN microdisk. The inserted image shows an enlargement in the red area of spectrum. Blue line is the experimental data fitting line, and the red and green lines in the illustration are Lorentz fitting of a single peak. (c-e) Schematics of possible resonant cavity modes in GaN disk, which are 6-WGM, 3-WGM and D3-WGM, respectively.
Fig. 3. (a) Excitation power dependent μ-PL spectra recorded at RT on a single GaN microdisk. The inserted image on the upper left is an enlarged view of the multi-peak position. (b) The plot of integrated PL intensity and FWHM as a function of excitation power. PE is the excitation threshold energy of about 11.5 μW.
Fig. 4. (a) The intense optical field distributed of hexagonal resonant was calculated by 2D-COMSOL. The white frame is the excitation area. (b) Schematic of the D3-WGM formed in GaN microdisk. The purple dotted line is the original path equivalent optical path. (c) The plot of the normalized quality factor as function of cavity polygonal order m for reflectivity of 76.3%, under different the radius of the circumscribed circle. Three modes in the same microdisk are marked in the image.
Fig. 5. The light response spectra and the intense optical field distributed at 374.5 nm for a 3-WGM and 376.5 nm for a D3-WGM were obtained by simulation for the excitation region with a side length of 0.7 μm (a-c) and 1.8 μm (d-f). As the excitation area increases, the number of modes decreases significantly, the light path narrows, and D3-WGM disappears.
| [1] |
Y.J. Zeng, I. Roland, X. Checoury, Z. Han, M. El Kurdi, S. Sauvage, B. Gayral, C. Brimont, T. Guillet, F. Semond, P. Boucaud, ACS Photonics 3 (2016) 1240-1247.
DOI URL |
| [2] |
F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.Y. Duboz, F. Semond, I. Roland, M. El Kurdi, X. Checoury, S. Sauvage, B. Gayral, P. Boucaud, ACS Photonics 5 (2018) 3643-3648.
DOI URL |
| [3] |
M.T. Hill, M.C. Gather, Nat. Photonics 8 (2014) 908-918.
DOI URL |
| [4] |
G. Zhu, J. Li, J. Li, J. Guo, J. Dai, C. Xu, Y. Wang, Opt. Lett. 43 (2018) 647-650.
DOI URL PMID |
| [5] |
S. Gwo, C.K. Shih, Rep. Prog. Phys. 79 (2016), 086501.
DOI URL PMID |
| [6] |
K.J. Vahala, Nature 424 (2003) 839-846.
DOI URL PMID |
| [7] |
F.F. Qin, C.X. Xu, Q.X. Zhu, J.F. Lu, F. Chen, D.T. You, Z. Zhu, A.G. Manohari, J. Mater. Chem. C 6 (2018) 3240-3244.
DOI URL |
| [8] |
D.J. Gargas, M.C. Moore, A. Ni, S.W. Chang, Z.Y. Zhang, S.L. Chuang, P.D. Yang, ACS Nano 4 (2010) 3270-3276.
URL PMID |
| [9] |
A.C. Tamboli, E.D. Haberer, R. Sharma, K.H. Lee, S. Nakamura, E.L. Hu, Nat. Photonics 1 (2007) 61-64.
DOI URL |
| [10] |
S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, R.A. Logan, Appl. Phys. Lett. 60 (1992) 289-291.
DOI URL |
| [11] |
C. Czekalla, C. Sturm, R. Schmidt-Grund, B.Q. Cao, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 92 (2008), 241102.
DOI URL |
| [12] |
T.V. Shubina, G. Pozina, V.N. Jmerik, V.Y. Davydov, C. Hemmingsson, A.V. Andrianov, D.R. Kazanov, S.V. Ivanov, Sci. Rep. 5 (2015) 17970.
DOI URL PMID |
| [13] |
N.S. Yu, D.P. Dong, Y. Qi, R. Yang, J. Mater. Sci.: Mater. Electron. 27 (2016) 10468-10472.
DOI URL |
| [14] |
H. Baek, C.H. Lee, K. Chung, G.C. Yi, Nano Lett. 13 (2013) 2782-2785.
DOI URL PMID |
| [15] |
J. Selles, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, B. Gayral, Sci. Rep. 6 (2016) 21650.
DOI URL PMID |
| [16] |
L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H.E. Beere, D.A. Ritchie, Nat. Photonics 3 (2009) 46-49.
DOI URL |
| [17] |
J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, Y. Li, ACS Appl. Mater. Interfaces 6 (2014) 10469-10475.
DOI URL PMID |
| [18] |
Q. Zhu, F. Qin, J. Lu, Z. Zhu, H. Nan, Z. Shi, Z. Ni, C. Xu, Nano Res. 10 (2017) 1996-2004.
DOI URL |
| [19] |
L. Wang, X.F. Zhou, S. Yang, G.S. Huang, Y.F. Mei, Photonics Res. 7 (2019) 905-916.
DOI URL |
| [20] |
T. Kouno, K. Kishino, M. Sakai, IEEE J. Quantum Electron. 47 (2011) 1565-1570.
DOI URL |
| [21] |
C. Tessarek, R. Roder, T. Michalsky, S. Geburt, H. Franke, R. Schmidt-Grund, M. Heilmann, B. Hoffmann, C. Ronning, M. Grundmann, S. Christiansen, ACS Photonics 1 (2014) 990-997.
DOI URL |
| [22] |
H. Baek, J.K. Hyun, K. Chung, H. Oh, G.C. Yi, Appl. Phys. Lett. 105 (2014), 201108.
DOI URL |
| [23] |
L. Zhang, X.L. Li, Y.L. Shao, J.X. Yu, Y.Z. Wu, X.P. Hao, Z.M. Yin, Y.B. Dai, Y. Tian, Q. Huo, Y.A. Shen, Z. Hua, B.G. Zhang, ACS Appl. Mater. Interfaces 7 (2015) 4504-4510.
DOI URL PMID |
| [24] |
M. Grundmann, C.P. Dietrich, Phys. Status Solidi B 249 (2012) 871-879.
DOI URL |
| [25] |
A.K. Bhowmik, Appl. Opt. 39 (2000) 3071-3075.
DOI URL PMID |
| [26] |
A.C. Tamboli, M.C. Schmidt, A. Hirai, S.P. DenBaars, E.L. Hu, Appl. Phys. Lett. 94 (2009), 251116.
DOI URL |
| [27] |
P. Ghosh, D.D. Yu, T. Hu, J. Liang, Z.H. Chen, Y.K. Liu, M.Y. Huang, J. Mater. Sci. 54 (2019) 8472-8481.
DOI URL |
| [28] |
Y.Y. Zhang, C. Feng, T. Wang, H.W. Choi, Appl. Phys. Lett. 108 (2016), 031110.
DOI URL |
| [29] |
J. Wiersig, Phys. Rev. A 67 (2003), 023807.
DOI URL |
| [30] |
R. Chen, B. Ling, X.W. Sun, H.D. Sun, Adv. Mater. 23 (2011) 2199-2204.
DOI URL PMID |
| [1] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
| [2] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
| [3] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
| [4] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
| [5] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
| [6] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
| [7] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
| [8] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
| [9] | Kritesh Kumar Gupta, Tanmoy Mukhopadhyay, Aditya Roy, Sudip Dey. Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers [J]. J. Mater. Sci. Technol., 2020, 50(0): 44-58. |
| [10] | Xin Wu, Fengwen Mu, Haiyan Zhao. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications [J]. J. Mater. Sci. Technol., 2020, 55(0): 16-34. |
| [11] | Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44(0): 121-132. |
| [12] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
| [13] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
| [14] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
| [15] | O. Kapitanova Olesya, V. Emelin Evgeny, G. Dorofeev Sergey, V. Evdokimov Pavel, N. Panin Gennady, Lee Youngmin, Lee Sejoon. Direct patterning of reduced graphene oxide/graphene oxide memristive heterostructures by electron-beam irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 237-243. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
