|
|
Design of binder jet additive manufactured co-continuous ceramic-reinforced metal matrix composites |
Pablo D. Enrique*( ), Ehsan Marzbanrad, Yahya Mahmoodkhani, Ali Keshavarzkermani, Hashem Al Momani, Ehsan Toyserkani, Norman Y. Zhou |
University of Waterloo, 200 University Ave W, Waterloo, Ontario, N2L 3G1, Canada |
|
|
Abstract Ceramic-reinforced metal matrix composites (MMCs) display beneficial properties owing to their combination of ceramic and metal phases. However, the properties are highly dependent on the reinforcing phase composition, volume fraction and morphology. Continuous fiber or network reinforcement morphologies are difficult and expensive to manufacture, and the often-used discontinuous particle or whisker reinforcement morphologies result in less effective properties. Here, we demonstrate the formation of a co-continuous ceramic-reinforced metal matrix composite using solid-state processing. Binder jet additive manufacturing (BJAM) was used to print a nickel superalloy part followed by post-processing via reactive sintering to form a continuous carbide reinforcing phase at the particle boundaries. The kinetics of reinforcement formation are investigated in order to develop a relationship between reactive sintering time, temperature and powder composition on the reinforcing phase thickness and volume fraction. To evaluate performance, the wear resistance of the reinforced BJAM alloy 625 MMC was compared to unreinforced BJAM alloy 625, demonstrating a 64 % decrease in the specific wear rate under abrasive wear conditions.
|
Received: 17 December 2019
|
Corresponding Authors:
Pablo D. Enrique
E-mail: pdenriqu@uwaterloo.ca
|
[1] |
D.B. Miracle, Compos. Sci. Technol. 65 (2005) 2526-2540.
|
[2] |
M. Haghshenas, Mater. Sci. Mater. Eng., Elsevier, 2016, pp. 0-28.
|
[3] |
M. Rosso, J. Mater. Process. Technol. 175 (2006) 364-375.
|
[4] |
D. Manfredi, M. Pavese, S. Biamino, A. Antonini, P. Fino, C. Badini, Compos. Part A Appl. Sci. Manuf. 41 (2010) 639-645.
doi: 10.1016/j.compositesa.2010.01.011
|
[5] |
M. Caccia, M. Tabandeh-Khorshid, G. Itskos, A.R. Strayer, A.S. Caldwell, S. Pidaparti, S. Singnisai, A.D. Rohskopf, A.M. Schroeder, D. Jarrahbashi, T. Kang, S. Sahoo, N.R. Kadasala, A. Marquez-Rossy, M.H. Anderson, E. Lara-Curzio, D. Ranjan, A. Henry, K.H. Sandhage, Nature 562 (2018) 406-409.
pmid: 30333580
|
[6] |
H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toyserkani, Mater. Des. 144 (2018) 98-128.
|
[7] |
B.D. Kernan, E.M. Sachs, M.A. Oliveira, M.J. Cima, Int. J. Refract. Met. Hard Mater. 25 (2007) 82-94.
|
[8] |
E. Sheydaeian, E. Toyserkani, Compos. Part B Eng. 138 (2018) 140-148.
doi: 10.1016/j.compositesb.2017.11.035
|
[9] |
C.L. Cramer, A.M. Elliott, J.O. Kiggans, B. Haberl, D.C. Anderson, Mater. Des. 180 (2019), 107956.
doi: 10.1016/j.matdes.2019.107956
|
[10] |
A. Levy, A. Miriyev, A. Elliott, S.S. Babu, N. Frage, Mater. Des. 118 (2017) 198-203.
doi: 10.1016/j.matdes.2017.01.024
|
[11] |
P.D. Enrique, E. Marzbanrad, Y. Mahmoodkhani, Z. Jiao, E. Toyserkani, N.Y. Zhou, Surf. Coat. Technol. 362 (2019) 141-149.
|
[12] |
P.D. Enrique, Y. Mahmoodkhani, E. Marzbanrad, E. Toyserkani, N.Y. Zhou, Mater. Lett. 232 (2018) 179-182.
|
[13] |
D. Olivier, S. Borros, G. Reyes, Rapid Prototyp. J. 20 (2014) 50-58.
|
[14] |
J. Humphreys, G.S. Rohrer, A. Rollett, Recrystallization and Related Annealing Phenomena, Elsevier, 2017.
|
[15] |
Special Metals, (2013).
|
[16] |
Haynes International, 1315 (2002) 12.
|
[17] |
W.J. Cheng, C.J. Wang, Surf. Coat. Technol. 204 (2009) 824-828.
|
[18] |
Y.T. Tang, A.J. Wilkinson, R.C. Reed, Metall. Mater. Trans. A 49 (2018) 4324-4342.
doi: 10.1007/s11661-018-4671-7
|
[19] |
T. Arai, J. Heat Treat. 1 (1979) 15-22.
|
[20] |
S.M. Devincent, G.M. Michal, Metall. Trans. A 24 (1993) 53-60.
doi: 10.1007/BF02669602
|
[21] |
S. Sen, Vacuum 79 (2005) 63-70.
|
[22] |
W. Mayr, W. Lengauer, P. Ettmayer, D. Rafaja, J. Baue, M. Bohr, J. Phase Equilibria Diffus. 20 (1999) 35-44.
|
[23] |
Z. Glowacki, W. Kaluba, Metall. Trans. A 13 (1982) 753-759.
|
[24] |
C. Qiu, J. Alloys Compd. 199 (1993) 53-59.
|
[25] |
W. Callister, D. Rethwisch, Materials Science and Engineering: An Introduction, 2007.
|
[26] |
G.Y. Lee, C.K. Dharan, R. Ritchie, Wear 252 (2002) 322-331.
doi: 10.1016/S0043-1648(01)00896-1
|
[27] |
S. Kumar, V. Balasubramanian, Tribol. Int. 43 (2010) 414-422.
|
[28] |
E.A.A. Diler, R. Ipek, Compos. Part B Eng. 50 (2013) 371-380.
|
[29] |
K. Holmberg, A. Matthews, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, second edition, Elsevier, 2009.
|
[30] |
P. Larsson, N. Axén, G. Akdogan, T. Ekström, S. Gordeev, Tribol. Lett. 16 (2004) 59-64.
|
[31] |
V. Tvergaard, Adv. Appl. Mech. (1989) 83-151.
|
[32] |
D. Zeng, L. Lu, N. Zhang, Y. Gong, J. Zhang, Wear 358-359 (2016) 62-71.
|
[1] |
Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1
-9
. |
[2] |
Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10
-19
. |
[3] |
Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1
-8
. |
[4] |
Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100
-104
. |
[5] |
Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105
-113
. |
[6] |
Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114
-122
. |
[7] |
Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123
-129
. |
[8] |
Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130
-139
. |
[9] |
Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140
-145
. |
[10] |
H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146
-155
. |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|