Please wait a minute...
J. Mater. Sci. Technol.  2020, Vol. 49 Issue (0): 81-90    DOI: 10.1016/j.jmst.2020.01.053
Research Article Current Issue | Archive | Adv Search |
Design of binder jet additive manufactured co-continuous ceramic-reinforced metal matrix composites
Pablo D. Enrique*(), Ehsan Marzbanrad, Yahya Mahmoodkhani, Ali Keshavarzkermani, Hashem Al Momani, Ehsan Toyserkani, Norman Y. Zhou
University of Waterloo, 200 University Ave W, Waterloo, Ontario, N2L 3G1, Canada
Download:  HTML  PDF(6595KB) 
Export:  BibTeX | EndNote (RIS)      

Ceramic-reinforced metal matrix composites (MMCs) display beneficial properties owing to their combination of ceramic and metal phases. However, the properties are highly dependent on the reinforcing phase composition, volume fraction and morphology. Continuous fiber or network reinforcement morphologies are difficult and expensive to manufacture, and the often-used discontinuous particle or whisker reinforcement morphologies result in less effective properties. Here, we demonstrate the formation of a co-continuous ceramic-reinforced metal matrix composite using solid-state processing. Binder jet additive manufacturing (BJAM) was used to print a nickel superalloy part followed by post-processing via reactive sintering to form a continuous carbide reinforcing phase at the particle boundaries. The kinetics of reinforcement formation are investigated in order to develop a relationship between reactive sintering time, temperature and powder composition on the reinforcing phase thickness and volume fraction. To evaluate performance, the wear resistance of the reinforced BJAM alloy 625 MMC was compared to unreinforced BJAM alloy 625, demonstrating a 64 % decrease in the specific wear rate under abrasive wear conditions.

Key words:  Binder jetting      Reactive sintering      Metal matrix composite      Co-continuous composite      Wear resistance     
Received:  17 December 2019     
Corresponding Authors:  Pablo D. Enrique     E-mail:

Cite this article: 

Pablo D. Enrique, Ehsan Marzbanrad, Yahya Mahmoodkhani, Ali Keshavarzkermani, Hashem Al Momani, Ehsan Toyserkani, Norman Y. Zhou. Design of binder jet additive manufactured co-continuous ceramic-reinforced metal matrix composites. J. Mater. Sci. Technol., 2020, 49(0): 81-90.

URL:     OR

Fig. 1.  Wear pin dimensions in mm for a) ZrO2 and b) Si3N4.
Fig. 2.  SEM images of particles on surface of a) BJAM alloy 625, b) BJAM alloy 625 MMC, and EDX scans of the MMC surface showing c) Cr and d) Ni concentration.
Fig. 3.  a) Back scatter SEM image of the cross-sectioned MMC and b) EDX line scan as indicated by the arrow.
Fig. 4.  a) EBSD images of the cross-sectioned MMC showing a) a phase map, b) a kernel average misorientation map, and c) a crystal orientation inverse pole figure map.
Sample Ni Cr Mo Fe Nb
Nominal alloy 625 >58 20-23 8-10 <5 3.15-4.15
Measured alloy 625 58.4 20.5 10.3 4.8 3.7
Depleted matrix 71.2 ± 0.6 7.4 ± 0.3 7.1 ± 0.6 5.8 ± 0.3 3.1 ± 0.3
Hastelloy N 71 7 16 <4 0
Table 1  Comparison of compositions (wt%) excluding minor alloying elements.
Fig. 5.  SEM images of a Cr3C2 coating on a cast alloy 625 specimen after 3 h at 1200 °C showing a) the cross section of the coating and b) the top surface of the coating, compared to SEM images of c) a particle with a Cr3C2 shell and d) a magnified view of the shell using a backscatter detector.
Temperature [°C] k [m2 s-1] d0 [m] R2
1100 6.6 × 10-16 0 0.99
1150 1.56 × 10-15 0 0.99
1200 2.38 × 10-15 2.72 × 10-6 0.99
Table 2  Fitted model parameters for Eq. (1) obtained from Fig. 6a.
Fig. 6.  a) Thickness of the Cr3C2 coating on cast alloy 625 as a function of time at various temperatures and b) an Arrhenius plot showing the logarithm of the growth rate constant as a function of the inverse temperature.
System k0 [m2 s-1] Ea [kJ mol-1] R2
This study 1.2 × 10-7 216 0.97
Table 3  Fitted model parameters for Eq. (2) obtained from Fig. 6b.
Fig. 7.  EDX line scans of cast alloy 625 samples with zb60 coatings exposed to 1200 °C showing Cr depletion over time as a function of distance from the carbide-matrix interface.
Fig. 8.  Cr3C2 growth during furnace ramp up (t<0) and at hold temperature of 1200 °C.
Fig. 9.  Maximum Cr3C2 shell volume fraction achievable with varying Cr concentrations in the starting powder. Values for some Ni-based alloys and the current study’s MMC are shown, with adjustments (no-fill shapes) for Mo solubility in the Cr3C2 shell.
Fig. 10.  Wear profiles using ZrO2 on a) BJAM alloy 625, b) BJAM alloy 625 MMC, and using Si3N4 on c) BJAM alloy 625 and d) BJAM alloy 625 MMC. Wear tracks are shown from e) conditions in (a), and f) conditions in (b).
Pin Material (kw1) BJAM alloy 625 (kw2) BJAM MMC kw1/kw2 ratio
ZrO2 4.39E-12 1.42E-12 3.09:1
Si3N4 3.70E-12 1.49E-12 2.49:1
Table 4  Specific wear rate (kw) in units of m2N-1.
Fig. 11.  a) Backscatter SEM image of the MMC after wear testing and b) SEM image of tilted MMC sample after wear testing.
Fig. 12.  SEM image of MMC showing a) crack propagation in the Cr3C2 phase blunted by the Ni matrix and b) plastic deformation at the Ni-Cr3C2 interface.
[1] D.B. Miracle, Compos. Sci. Technol. 65 (2005) 2526-2540.
[2] M. Haghshenas, Mater. Sci. Mater. Eng., Elsevier, 2016, pp. 0-28.
[3] M. Rosso, J. Mater. Process. Technol. 175 (2006) 364-375.
[4] D. Manfredi, M. Pavese, S. Biamino, A. Antonini, P. Fino, C. Badini, Compos. Part A Appl. Sci. Manuf. 41 (2010) 639-645.
doi: 10.1016/j.compositesa.2010.01.011
[5] M. Caccia, M. Tabandeh-Khorshid, G. Itskos, A.R. Strayer, A.S. Caldwell, S. Pidaparti, S. Singnisai, A.D. Rohskopf, A.M. Schroeder, D. Jarrahbashi, T. Kang, S. Sahoo, N.R. Kadasala, A. Marquez-Rossy, M.H. Anderson, E. Lara-Curzio, D. Ranjan, A. Henry, K.H. Sandhage, Nature 562 (2018) 406-409.
pmid: 30333580
[6] H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toyserkani, Mater. Des. 144 (2018) 98-128.
[7] B.D. Kernan, E.M. Sachs, M.A. Oliveira, M.J. Cima, Int. J. Refract. Met. Hard Mater. 25 (2007) 82-94.
[8] E. Sheydaeian, E. Toyserkani, Compos. Part B Eng. 138 (2018) 140-148.
doi: 10.1016/j.compositesb.2017.11.035
[9] C.L. Cramer, A.M. Elliott, J.O. Kiggans, B. Haberl, D.C. Anderson, Mater. Des. 180 (2019), 107956.
doi: 10.1016/j.matdes.2019.107956
[10] A. Levy, A. Miriyev, A. Elliott, S.S. Babu, N. Frage, Mater. Des. 118 (2017) 198-203.
doi: 10.1016/j.matdes.2017.01.024
[11] P.D. Enrique, E. Marzbanrad, Y. Mahmoodkhani, Z. Jiao, E. Toyserkani, N.Y. Zhou, Surf. Coat. Technol. 362 (2019) 141-149.
[12] P.D. Enrique, Y. Mahmoodkhani, E. Marzbanrad, E. Toyserkani, N.Y. Zhou, Mater. Lett. 232 (2018) 179-182.
[13] D. Olivier, S. Borros, G. Reyes, Rapid Prototyp. J. 20 (2014) 50-58.
[14] J. Humphreys, G.S. Rohrer, A. Rollett, Recrystallization and Related Annealing Phenomena, Elsevier, 2017.
[15] Special Metals, (2013).
[16] Haynes International, 1315 (2002) 12.
[17] W.J. Cheng, C.J. Wang, Surf. Coat. Technol. 204 (2009) 824-828.
[18] Y.T. Tang, A.J. Wilkinson, R.C. Reed, Metall. Mater. Trans. A 49 (2018) 4324-4342.
doi: 10.1007/s11661-018-4671-7
[19] T. Arai, J. Heat Treat. 1 (1979) 15-22.
[20] S.M. Devincent, G.M. Michal, Metall. Trans. A 24 (1993) 53-60.
doi: 10.1007/BF02669602
[21] S. Sen, Vacuum 79 (2005) 63-70.
[22] W. Mayr, W. Lengauer, P. Ettmayer, D. Rafaja, J. Baue, M. Bohr, J. Phase Equilibria Diffus. 20 (1999) 35-44.
[23] Z. Glowacki, W. Kaluba, Metall. Trans. A 13 (1982) 753-759.
[24] C. Qiu, J. Alloys Compd. 199 (1993) 53-59.
[25] W. Callister, D. Rethwisch, Materials Science and Engineering: An Introduction, 2007.
[26] G.Y. Lee, C.K. Dharan, R. Ritchie, Wear 252 (2002) 322-331.
doi: 10.1016/S0043-1648(01)00896-1
[27] S. Kumar, V. Balasubramanian, Tribol. Int. 43 (2010) 414-422.
[28] E.A.A. Diler, R. Ipek, Compos. Part B Eng. 50 (2013) 371-380.
[29] K. Holmberg, A. Matthews, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, second edition, Elsevier, 2009.
[30] P. Larsson, N. Axén, G. Akdogan, T. Ekström, S. Gordeev, Tribol. Lett. 16 (2004) 59-64.
[31] V. Tvergaard, Adv. Appl. Mech. (1989) 83-151.
[32] D. Zeng, L. Lu, N. Zhang, Y. Gong, J. Zhang, Wear 358-359 (2016) 62-71.
[1] Ji Zou, Guo-Jun Zhang, Zheng-Yi Fu. In-situ ZrB2- hBN ceramics with high strength and low elasticity[J]. 材料科学与技术, 2020, 48(0): 186-193.
[2] Kaustubh Bawane, Kathy Lu. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures[J]. 材料科学与技术, 2020, 43(0): 126-134.
[3] P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. 材料科学与技术, 2020, 45(0): 98-107.
[4] Przemysł Kot; aw, BaczmańAndrzej ski, GadalińElż ska; bieta, WrońSebastian ski, WrońMarcin ski, WróMirosł bel; aw, Gizo Bokuchava, ScheffzüChristian k, Krzysztof Wierzbanowski. Evolution of phase stresses in Al/SiCp composite during thermal cycling and compression test studied using diffraction and self-consistent models[J]. 材料科学与技术, 2020, 36(0): 176-189.
[5] Rita Maurya, Abdul Rahim Siddiqui, Prvan Kumar Katiyar, Kantesh Balani. Mechanical, tribological and anti-corrosive properties of polyaniline/graphene coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys[J]. 材料科学与技术, 2019, 35(8): 1767-1778.
[6] Shuo Yin, Wenya Li, Bo Song, Xingchen Yan, Min Kuang, Yaxin Xu, Kui Wen, Rocco Lupoi. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying[J]. 材料科学与技术, 2019, 35(6): 1003-1007.
[7] Woo Jin Lee, Jisoo Kim, Hyung Wook Park. Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation[J]. 材料科学与技术, 2019, 35(5): 891-901.
[8] Liuliu Han, Kun Li, Cheng Qian, Jingwen Qiu, Chengshang Zhou, Yong Liu. Wear behavior of light-weight and high strength Fe-Mn-Ni-Al matrix self-lubricating steels[J]. 材料科学与技术, 2019, 35(4): 623-630.
[9] Haibin Wang, Mark Gee, Qingfan Qiu, Hannah Zhang, Xuemei Liu, Hongbo Nie, Xiaoyan Song, Zuoren Nie. Grain size effect on wear resistance of WC-Co cemented carbides under different tribological conditions[J]. 材料科学与技术, 2019, 35(11): 2435-2446.
[10] Sree Manu K.M., Ajay Raag L., Rajan T.P.D., Pai B.C., Petley Vijay, Namdeo Verma Shweta. Self-lubricating bidirectional carbon fiber reinforced smart aluminum composites by squeeze infiltration process[J]. 材料科学与技术, 2019, 35(11): 2559-2569.
[11] Mohamed M. El-Sayed Seleman, Mohamed M.Z. Ahmed, Sabbah Ataya. Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites[J]. 材料科学与技术, 2018, 34(9): 1580-1591.
[12] Junho Lee, Dongju Lee, Myung Hoon Song, Wonhyuk Rhee, Ho Jin Ryu, Soon Hyung Hong. In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering[J]. 材料科学与技术, 2018, 34(8): 1397-1404.
[13] Yu-Shi Yi, Yi Meng, Dan-Qing Li, Sumio Sugiyama, Jun Yanagimoto. Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%[J]. 材料科学与技术, 2018, 34(7): 1149-1161.
[14] J.F. Zhang, X.X. Zhang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma. Simulations of deformation and damage processes of SiCp/Al composites during tension[J]. 材料科学与技术, 2018, 34(4): 627-634.
[15] Jun Cheng, Shengyu Zhu, Yuan Yu, Jun Yang, Weimin Liu. Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti2AlC particulates[J]. 材料科学与技术, 2018, 34(4): 670-678.
[1] Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel[J]. J. Mater. Sci. Technol., 2020, 47(0): 1 -9 .
[2] Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa[J]. J. Mater. Sci. Technol., 2020, 47(0): 10 -19 .
[3] Wenjing Long, Haining Li, Bing Yang, Nan Huang, Lusheng Liu, Zhigang Gai, Xin Jiang. Research Article Superhydrophobic diamond-coated Si nanowires for application of anti-biofouling’[J]. J. Mater. Sci. Technol., 2020, 48(0): 1 -8 .
[4] Long Chen, Chengtao Yang, Chaoyi Yan. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets[J]. J. Mater. Sci. Technol., 2020, 48(0): 100 -104 .
[5] Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres[J]. J. Mater. Sci. Technol., 2020, 48(0): 105 -113 .
[6] Bo Yang, Xianghe Peng, Yinbo Zhao, Deqiang Yin, Tao Fu, Cheng Huang. Superior mechanical and thermal properties than diamond: Diamond/lonsdaleite biphasic structure[J]. J. Mater. Sci. Technol., 2020, 48(0): 114 -122 .
[7] Y.Z. Chen, X.Y. Ma, W.X. Zhang, H. Dong, G.B. Shan, Y.B. Cong, C. Li, C.L. Yang, F. Liu. Effects of dealloying and heat treatment parameters on microstructures of nanoporous Pd[J]. J. Mater. Sci. Technol., 2020, 48(0): 123 -129 .
[8] Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity[J]. J. Mater. Sci. Technol., 2020, 48(0): 130 -139 .
[9] Jinxiong Hou, Wenwen Song, Liwei Lan, Junwei Qiao. Surface modification of plasma nitriding on AlxCoCrFeNi high-entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 140 -145 .
[10] H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys[J]. J. Mater. Sci. Technol., 2020, 48(0): 146 -155 .
ISSN: 1005-0302
CN: 21-1315/TG
About JMST
Privacy Statement
Terms & Conditions
Editorial Office: Journal of Materials Science & Technology , 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-24-83978208

Copyright © 2016 JMST, All Rights Reserved.