J. Mater. Sci. Technol. ›› 2020, Vol. 47: 162-168.DOI: 10.1016/j.jmst.2020.02.019
• Research Article • Previous Articles Next Articles
Wengang Zhaia,b, Wei Zhoua,*(), Sharon Mui Ling Naib,*(
), Jun Weib
Received:
2019-09-23
Revised:
2019-11-18
Accepted:
2019-12-08
Published:
2020-06-15
Online:
2020-06-24
Contact:
Wei Zhou,Sharon Mui Ling Nai
Wengang Zhai, Wei Zhou, Sharon Mui Ling Nai, Jun Wei. Characterization of nanoparticle mixed 316 L powder for additive manufacturing[J]. J. Mater. Sci. Technol., 2020, 47: 162-168.
Parameter | High energy ball milling | Low energy ball milling (this work) |
---|---|---|
Ball-to-powder ratio | 5:1 - 30:1 | 1:1 |
Mixing speed (rpm) | 200 - 600 | 90 |
Mixing time (h) | 20 - 150 | 7 |
Table 1 Parameters used in high energy ball milling and our method.
Parameter | High energy ball milling | Low energy ball milling (this work) |
---|---|---|
Ball-to-powder ratio | 5:1 - 30:1 | 1:1 |
Mixing speed (rpm) | 200 - 600 | 90 |
Mixing time (h) | 20 - 150 | 7 |
Fig. 2. (a) Distribution of Y2O3 on the surface of 316 L powder after mixing for 1 h and (b) EDS result of the area pointed by the arrow in (a) showing Y2O3 agglomeration.
Fig. 3. SEM images of (a) 0.3% Y2O3 after mixing for 7 h, (b) higher magnification image showing the distribution of 0.3% Y2O3 on the surface of 316 L, (c) 1.0% Y2O3 after mixing for 7 h and (d) higher magnification image showing the distribution of 1.0% Y2O3 on the surface of 316 L.
Fig. 4. Powder properties of original 316 L, ball milled 316 L, 316 L-0.3% Y2O3 and 316 L-1.0% Y2O3: (a) flowability; (b) apparent density; (c) tap density.
Powder | 316 L | Ball milled 316 L | 316 L-0.3%Y2O3 | 316 L-1.0%Y2O3 |
---|---|---|---|---|
Flow rate (s/50 g) | 15.92 | 16.79 | 17.07 | 20.44 |
Apparent density (g/cm3) | 4.386 | 4.168 | 4.202 | 4.206 |
Tap density (g/cm3) | 5.025 | 4.926 | 4.854 | 4.831 |
Table 2 Powder properties of 316 L, ball milled 316 L, 316 L-0.3% Y2O3 and 316 L-1.0%Y2O3.
Powder | 316 L | Ball milled 316 L | 316 L-0.3%Y2O3 | 316 L-1.0%Y2O3 |
---|---|---|---|---|
Flow rate (s/50 g) | 15.92 | 16.79 | 17.07 | 20.44 |
Apparent density (g/cm3) | 4.386 | 4.168 | 4.202 | 4.206 |
Tap density (g/cm3) | 5.025 | 4.926 | 4.854 | 4.831 |
Fig. 7. SLM printed samples using (a) original 316 L powder, (b) ball milled 316 L-0.3% Y2O3 powder. The image insert shows the presence of Y2O3 particles; (c) ball milled 316 L-1.0% Y2O3 powder, (d) SEM image of Y2O3 agglomeration in SLM 316 L-1.0% Y2O3 sample.
[1] | N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, J. Nanomater. 2012 (2012) 1-13. |
[2] | J. Jue, D. Gu, K. Chang, D. Dai, Powder Technol. 310 (2017) 80-91. |
[3] | D.Y. Ying, D.L. Zhang, Mater. Sci. Eng. A 286 (2000) 152-156. |
[4] | L. Zhou, S. Feng, M. Sun, B. Xu, D. Li, J. Mater, Sci. Technol. 35 (2019) 1671-1680. |
[5] | W. Zhou, Z.M. Xu, J. Mater, Process. Technol. 63 (1997) 358-363. |
[6] | Z. Oksiuta, P. Hosemann, S.C. Vogel, N. Baluc, J. Nucl. Mater. 451 (2014) 320-327. |
[7] | S. Bathula, R.C. Anandani, A. Dhar, A.K. Srivastava, Mater. Sci. Eng. A 545 (2012) 97-102. |
[8] | M. Gao, Z. Chen, H. Kang, E. Guo, R. Li, Y. Fu, H. Xie, T. Wang, J. Mater, Sci. Technol. 35 (2019) 1523-1531. |
[9] | S. Nachum, N.A. Fleck, M.F. Ashby, A. Colella, P. Matteazzi, Mater. Sci. Eng. A 527 (2010) 5065-5071. |
[10] | R. Xie, Z. Lu, C. Lu, Z. Li, X. Ding, C. Liu, Fusion Eng. Des. 115 (2017) 67-73. |
[11] | Z. Zhou, S. Yang, W. Chen, L. Liao, Y. Xu, J. Nucl. Mater. 428 (2012) 31-34. |
[12] | M. Wang, Z. Zhou, H. Sun, H. Hu, S. Li, Mater. Sci. Eng. A 559 (2013) 287-292. |
[13] | M. Wang, H. Sun, L. Zou, G. Zhang, S. Li, Z. Zhou, Powder Technol. 272 (2015) 309-315. |
[14] | I. Ozdemir, S. Ahrens, S. Mücklich, B. Wielage, J. Mater. Process. Technol. 205 (2008) 111-118. |
[15] | S. Tahamtan, A. Halvaee, M. Emamy, M.S. Zabihi, Mater. Des. 49 (2013) 347-359. |
[16] | Q. Han, R. Setchi, S.L. Evans, Powder Technol. 297 (2016) 183-192. |
[17] | Q. Han, R. Setchi, S.L. Evans, Int. J. Adv. Manuf. Technol. 88 (2016) 1429-1438. |
[18] | B. AlMangour, D. Grzesiak, T. Borkar, J.M. Yang, Mater. Des. 138 (2018) 119-128. |
[19] | B. AlMangour, D. Grzesiak, J.M. Yang, Powder Technol. 309 (2017) 37-48. |
[20] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu , Nat. Mater. 17 (2018) 63-71.
DOI URL PMID |
[21] | J.J. Lewandowski, M. Seifi, Ann. Rev. Mater. Res. 46 (2016) 151-186. |
[22] | N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269. |
[23] | R. Gao, W. Ge, S. Miao, T. Zhang, X. Wang, Q. Fang, Front. Mater. Sci. 10 (2015) 73-79. |
[24] | R. Gao, L. Zeng, H. Ding, T. Zhang, X. Wang, Q. Fang, Mater. Des. 89 (2016) 1171-1180. |
[25] | X. Li, H.J. Willy, S. Chang, W. Lu, T.S. Herng, J. Ding, Mater. Des. 145 (2018) 1-10. |
[26] | B. Zhang, G. Bi, S. Nai, C.N. Sun, J. Wei, Opt. Laser Technol. 80 (2016) 186-195. |
[27] | X. Yao, S.K. Moon, B.Y. Lee, G. Bi, Int. J. Precision Eng.Manuf. 18 (2017) 1693-1701. |
[28] | X. Yao, S. Ki Moon, B. Yang Lee, G. Bi, IOP Conf. Series: Mater. Sci. Eng. 317 (2018), 012074. |
[29] | J.W. Murray, M. Simonelli, A. Speidel, D.M. Grant, A.T. Clare, Powder Technol. 350 (2019) 100-106. |
[30] | J.H. Tan, W.L.E. Wong, K.W. Dalgarno, Addit. Manuf. 18 (2017) 228-255. |
[31] | N.E. Gorji, R. O’Connor, A. Mussatto, M. Snelgrove, P.G.M. González, D. Brabazon, Materialia 8 (2019), 100489. |
[32] | X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Acta Mater. 129 (2017) 183-193. |
[33] | J.C. Walker, K.M. Berggreen, A.R. Jones, C.J. Sutcliffe, Adv. Eng. Mater. 11 (2009) 541-546. |
[34] | T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, G.J. Tatlock, Acta Mater. 87 (2015) 201-215. |
[35] | T. Boegelein, E. Louvis, K. Dawson, G.J. Tatlock, A.R. Jones, Mater. Charact. 112 (2016) 30-40. |
[36] | R.M. Hunt, K.J. Kramer, B. El-Dasher, J. Nuclear Mater. 464 (2015) 80-85. |
[37] | N.E. Hodge, R.M. Ferencz, J.M. Solberg, Comput. Mech. 54 (2014) 33-51. |
[38] | S.A. Khairallah, A. Anderson, J. Mater, Process. Technol. 214 (2014) 2627-2636. |
[1] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[2] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[3] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
[4] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[5] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[6] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[7] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[8] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[9] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
[10] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[11] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[12] | Bassem Barkia, Pascal Aubry, Paul Haghi-Ashtiani, Thierry Auger, Lionel Gosmain, Frédéric Schuster, Hicham Maskrot. On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: Multiscale investigation [J]. J. Mater. Sci. Technol., 2020, 41(0): 209-218. |
[13] | Yinghui Zhou, Xin Lin, Nan Kang, Weidong Huang, Jiang Wang, Zhennan Wang. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 37(0): 143-153. |
[14] | Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 106-117. |
[15] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||