J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (7): 1334-1344.DOI: 10.1016/j.jmst.2019.03.013
• Orginal Article • Previous Articles Next Articles
Chengyang Jiangab, Lingyi Qianc, Min Fenga, He Liub, Zebin Baob*(), Minghui Chena*(
), Shenglong Zhub, Fuhui Wangab
Received:
2018-12-24
Revised:
2019-03-03
Accepted:
2019-03-05
Online:
2019-07-20
Published:
2019-06-20
Contact:
Bao Zebin,Chen Minghui
About author:
1These authors contributed equally.
Chengyang Jiang, Lingyi Qian, Min Feng, He Liu, Zebin Bao, Minghui Chen, Shenglong Zhu, Fuhui Wang. Benefits of Zr addition to oxidation resistance of a single-phase (Ni,Pt)Al coating at 1373 K[J]. J. Mater. Sci. Technol., 2019, 35(7): 1334-1344.
Fig. 1. Mass gain (a) and square of mass gain (b) curves of NiAl, (Ni,Pt)Al and Zr-doped (Ni,Pt)Al coating specimens versus the oxidation time at 1373 K, where the inserted graph shows the mass change during the early 20 h oxidation by thermally gravity analysis (TGA).
Fig. 2. Surface morphologies of (Ni,Pt)Al (a: 1 h, c: 5 h) and Zr-doped (Ni,Pt)Al (b: 1 h, d: 5 h) coating samples after the isothermal oxidation test at 1373 K.
Area | Al | Cr | Co | Ni | Pt | O |
---|---|---|---|---|---|---|
1 | 34.74 | 1.99 | 3.40 | 39.44 | 5.90 | 14.53 |
2 | 31.04 | 0.37 | 0.54 | 8.16 | 0.82 | 59.06 |
3 | 33.20 | / | / | 0.36 | / | 66.45 |
4 | 28.07 | / | / | 0.22 | / | 71.72 |
5 | 34.81 | / | / | 0.36 | / | 64.83 |
6 | 33.89 | / | / | 0.31 | / | 65.82 |
Table 1 EDS results for the tagged area in Fig. 2a-d (in at.%).
Area | Al | Cr | Co | Ni | Pt | O |
---|---|---|---|---|---|---|
1 | 34.74 | 1.99 | 3.40 | 39.44 | 5.90 | 14.53 |
2 | 31.04 | 0.37 | 0.54 | 8.16 | 0.82 | 59.06 |
3 | 33.20 | / | / | 0.36 | / | 66.45 |
4 | 28.07 | / | / | 0.22 | / | 71.72 |
5 | 34.81 | / | / | 0.36 | / | 64.83 |
6 | 33.89 | / | / | 0.31 | / | 65.82 |
Fig. 4. Surface and cross-sectional morphologies of NiAl (a and d), (Ni,Pt)Al (b and e) and Zr-doped (Ni,Pt)Al (c and f) coating specimens after isothermal oxidation at 1373 K for 300 h.
Fig. 5. STEM-EDS mapping images showing the distributions of Al, O, Ta and Zr in the oxide scale formed on Zr-doped (Ni,Pt)Al coating after isothermal oxidation at 1373 K for 300 h, which clearly demonstrates that the presence of Zr-rich particle along the grain boundary matched with Ta.
Fig. 7. Cross-sectional morphologies of NiAl (a: 100 cyc., d: 200 cyc.), (Ni,Pt)Al (b: 100 cyc., e: 200 cyc.) and Zr-doped (Ni,Pt)Al (c: 100 cyc., f: 200 cyc.) coating specimens after cyclic oxidation for different cycles at 1373 K.
Fig. 8. Surface and cross-sectional morphologies of NiAl (a and d), (Ni,Pt)Al (b and e) and Zr-doped (Ni,Pt)Al (c and f) coating specimens after cyclic oxidation for 800 cycles at 1373 K.
Fig. 9. 3D topography and surface root mean square roughness (Rq/nm) of (Ni,Pt)Al (a: 0 cyc., c: 200 cyc., e: 800 cyc.) and Zr-doped (Ni,Pt)Al (b: 0 cyc., d: 200 cyc., f: 800 cyc.) coating specimens after certain cyclic oxidation at 1373 K.
Isothermal oxidation for 300 h (mg cm-2) | Cyclic oxidation for 360 cycles (mg cm-2) | Weight of spallation (mg cm-2) | |
---|---|---|---|
Normal (Ni,Pt)Al | 1.40 | 0.37 | 1.03 |
Zr-doped (Ni,Pt)Al | 0.82 | 0.34 | 0.48 |
Table 2 Weight changes of normal and Zr-doped (Ni,Pt)Al coating samples after isothermal and cyclic oxidation for 300 h.
Isothermal oxidation for 300 h (mg cm-2) | Cyclic oxidation for 360 cycles (mg cm-2) | Weight of spallation (mg cm-2) | |
---|---|---|---|
Normal (Ni,Pt)Al | 1.40 | 0.37 | 1.03 |
Zr-doped (Ni,Pt)Al | 0.82 | 0.34 | 0.48 |
|
[1] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[2] | Haoxuan Wang, Shouye Wang, Yejie Cao, Wen Liu, Yiguang Wang. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 °C [J]. J. Mater. Sci. Technol., 2021, 60(0): 147-155. |
[3] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[4] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[5] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[6] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[7] | Ting Wu, Carsten Blawert, Mikhail L.Zheludkevich. Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process [J]. J. Mater. Sci. Technol., 2020, 50(0): 75-85. |
[8] | Yuecun Wang, Meng Li, Yueqing Yang, Xin’ai Zhao, Evan Ma, Zhiwei Shan. In-situ surface transformation of magnesium to protect against oxidation at elevated temperatures [J]. J. Mater. Sci. Technol., 2020, 44(0): 48-53. |
[9] | Jianlu Pei, Yefan Li, Chong Li, Zumin Wang, Yongchang Liu, Huijun Li. Microstructure-dependent oxidation behavior of Ni-Al single-crystal alloys [J]. J. Mater. Sci. Technol., 2020, 52(0): 162-171. |
[10] | Fangqiang Ning, Jibo Tan, Xinqiang Wu. Effects of 405 stainless steel on crevice corrosion behavior of Alloy 690 in high-temperature pure water [J]. J. Mater. Sci. Technol., 2020, 47(0): 76-87. |
[11] | Peng Li, Shuai Wang, Yueqing Xia, Xiaohu Hao, Honggang Dong. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy [J]. J. Mater. Sci. Technol., 2020, 45(0): 59-69. |
[12] | Changjin Xu, Yutong Wu, Song Li, Jun Zhou, Jing Chen, Min Jiang, Hongda Zhao, Gaowu Qin. Engineering the epitaxial interface of Pt-CeO2 by surface redox reaction guided nucleation for low temperature CO oxidation [J]. J. Mater. Sci. Technol., 2020, 40(0): 39-46. |
[13] | G.Y. Li, L.F. Cao, J.Y. Zhang, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, J. Sun. An insight into Mg alloying effects on Cu thin films: microstructural evolution and mechanical behavior [J]. J. Mater. Sci. Technol., 2020, 57(0): 101-112. |
[14] | panelJianwei Xu, Weidong Zeng, Dadi Zhou, Wei Chen, Shengtong He, Xiaoyong Zhang. Analysis of crystallographic orientation and morphology of microstructure during hot working for an alpha/beta titanium alloy [J]. J. Mater. Sci. Technol., 2020, 59(0): 1-13. |
[15] | Lanlan Yang, Minghui Chen, Jinlong Wang, Yanxin Qiao, Pingyi Guo, Shenglong Zhu, Fuhui Wang. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45(0): 49-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||